Laboratory Animal and Comparative Medicine ›› 2022, Vol. 42 ›› Issue (1): 18-26.DOI: 10.12300/j.issn.1674-5817.2022.011
Special Issue: 专家论坛; 实验动物伦理与福利专辑
• Special Reports: Laboratory Animal Anesthesia • Previous Articles Next Articles
Xiao LU1,2, Lingzhi YU3, Sonja Tsung-Ying CHOU4, Ruying LI1, Wenjun CHEN1, Shanxiang JIANG2()
Received:
2022-01-02
Revised:
2022-02-10
Online:
2022-02-25
Published:
2022-02-25
Contact:
Shanxiang JIANG
CLC Number:
Xiao LU,Lingzhi YU,Sonja Tsung-Ying CHOU,et al. General Anesthetics Commonly Used for Laboratory Animals[J]. Laboratory Animal and Comparative Medicine, 2022, 42(1): 18-26. DOI: 10.12300/j.issn.1674-5817.2022.011.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2022.011
麻醉药名称 | 优点 | 缺点 |
---|---|---|
戊巴比妥钠 | 使用方便; 价格便宜; 易于储存; 麻醉起效快;麻醉持续时间较长 | 管制药物,购买困难; 注射部位刺激; 镇痛效果微弱; 心肺系统抑制明显;安全范围窄 |
氯胺酮 | 价格便宜; 使用方便;安全范围广; 镇痛效果好; 对心肺系统抑制不明显 | 管制药物,购买困难; 分离麻醉,腺体分泌增加; 注射部位有一定刺激性 |
舒泰-50 | 非管制药物; 使用方便; 有一定的镇痛效果; 对心肺系统的抑制不明显 | 价格较高; 适用的种属范围小; 麻醉时间较短 |
阿佛丁 | 非管制药物; 使用方便; 麻醉时间短,麻醉起效快 | 非药品级药物,配制需要有明确规范要求(pH值、无菌、热原控制、均一性等);不耐储存,现配现用; 心肺抑制明显;注射部位刺激严重; 安全范围窄 |
丙泊酚 | 非管制药物; 体内代谢速率快 | 只能静脉缓慢滴注; 维持麻醉的时间短; 镇痛效果微弱 |
水合氯醛 | 非管制药物 | 非药品级药物,配制需要有明确规范要求(pH值、无菌、热原控制、均一性等);代谢产物为强致癌物; 对注射部位刺激严重; 镇痛效果微弱; 心肺系统抑制明显; 多个组织器官有明显毒性 |
乌拉坦 | 非管制药物 | 非药品级药物,配制需要有明确规范要求(pH值、无菌、热原控制、均一性等);强致癌物; 心肺系统抑制明显; 有职业健康隐患; 麻醉剂量下,对组织器官有明显毒性 |
右旋美托嘧啶 | 非管制药物; 麻醉起效快;有镇痛效果; 心肺系统抑制不明显 | 价格较高; 适用的种属范围小 |
异氟烷 | 非管制药物; 安全范围广; 麻醉起效快,苏醒快; 种属适用范围广; 麻醉剂量下,肝肾毒性小; 麻醉效果一致性好 | 需要特制的挥发罐 |
乙醚 | 非管制药物 | 需要特制的挥发罐; 爆炸危险性高; 有职业健康隐患; 清除率慢 |
Table 1 Positives and negatives of commonly used anesthetic drugs
麻醉药名称 | 优点 | 缺点 |
---|---|---|
戊巴比妥钠 | 使用方便; 价格便宜; 易于储存; 麻醉起效快;麻醉持续时间较长 | 管制药物,购买困难; 注射部位刺激; 镇痛效果微弱; 心肺系统抑制明显;安全范围窄 |
氯胺酮 | 价格便宜; 使用方便;安全范围广; 镇痛效果好; 对心肺系统抑制不明显 | 管制药物,购买困难; 分离麻醉,腺体分泌增加; 注射部位有一定刺激性 |
舒泰-50 | 非管制药物; 使用方便; 有一定的镇痛效果; 对心肺系统的抑制不明显 | 价格较高; 适用的种属范围小; 麻醉时间较短 |
阿佛丁 | 非管制药物; 使用方便; 麻醉时间短,麻醉起效快 | 非药品级药物,配制需要有明确规范要求(pH值、无菌、热原控制、均一性等);不耐储存,现配现用; 心肺抑制明显;注射部位刺激严重; 安全范围窄 |
丙泊酚 | 非管制药物; 体内代谢速率快 | 只能静脉缓慢滴注; 维持麻醉的时间短; 镇痛效果微弱 |
水合氯醛 | 非管制药物 | 非药品级药物,配制需要有明确规范要求(pH值、无菌、热原控制、均一性等);代谢产物为强致癌物; 对注射部位刺激严重; 镇痛效果微弱; 心肺系统抑制明显; 多个组织器官有明显毒性 |
乌拉坦 | 非管制药物 | 非药品级药物,配制需要有明确规范要求(pH值、无菌、热原控制、均一性等);强致癌物; 心肺系统抑制明显; 有职业健康隐患; 麻醉剂量下,对组织器官有明显毒性 |
右旋美托嘧啶 | 非管制药物; 麻醉起效快;有镇痛效果; 心肺系统抑制不明显 | 价格较高; 适用的种属范围小 |
异氟烷 | 非管制药物; 安全范围广; 麻醉起效快,苏醒快; 种属适用范围广; 麻醉剂量下,肝肾毒性小; 麻醉效果一致性好 | 需要特制的挥发罐 |
乙醚 | 非管制药物 | 需要特制的挥发罐; 爆炸危险性高; 有职业健康隐患; 清除率慢 |
种属 | 麻醉药名称 | 剂量 | 给药途径 |
---|---|---|---|
小鼠 | 氯胺酮联合右旋美托嘧啶 | 75/0.5 mg/kg | IP |
舒泰-50联合赛拉嗪 | 80/20 mg/kg | IP | |
大鼠 | 氯胺酮联合赛拉嗪 | 60/6 mg/kg | IP |
舒泰-50 | 40~50 mg/kg | IP,IM | |
兔 | 氯胺酮联合赛拉嗪 | 35/5 mg/kg | IM |
舒泰-50联合赛拉嗪 | 15/5 mg/kg | IM | |
猪 | 氯胺酮联合赛拉嗪 | 20/2 mg/kg | IM |
舒泰-50 | 6~8 mg/kg | IM | |
犬 | 丙泊酚 | 0.2 mg·kg-1·min-1 | IV |
舒泰-50 | 7.5~25 mg/kg | IM | |
食蟹猴 | 氯胺酮 | 5~20 mg/kg | IM |
舒泰-50 | 2~5 mg/kg | IM |
Table 2 Recommended usage of common anesthetic drugs
种属 | 麻醉药名称 | 剂量 | 给药途径 |
---|---|---|---|
小鼠 | 氯胺酮联合右旋美托嘧啶 | 75/0.5 mg/kg | IP |
舒泰-50联合赛拉嗪 | 80/20 mg/kg | IP | |
大鼠 | 氯胺酮联合赛拉嗪 | 60/6 mg/kg | IP |
舒泰-50 | 40~50 mg/kg | IP,IM | |
兔 | 氯胺酮联合赛拉嗪 | 35/5 mg/kg | IM |
舒泰-50联合赛拉嗪 | 15/5 mg/kg | IM | |
猪 | 氯胺酮联合赛拉嗪 | 20/2 mg/kg | IM |
舒泰-50 | 6~8 mg/kg | IM | |
犬 | 丙泊酚 | 0.2 mg·kg-1·min-1 | IV |
舒泰-50 | 7.5~25 mg/kg | IM | |
食蟹猴 | 氯胺酮 | 5~20 mg/kg | IM |
舒泰-50 | 2~5 mg/kg | IM |
1 | GARDHOUSE S, SANCHEZ A. Rabbit sedation and anesthesia[J]. Vet Clin North Am Exot Anim Pract, 2022, 25(1):181-210. DOI:10.1016/j.cvex.2021.08.012 . |
2 | ADAMS S, PACHARINSAK C. Mouse anesthesia and analgesia[J]. Curr Protoc Mouse Biol, 2015, 5(1):51-63. DOI:10.1002/9780470942390.mo140179 . |
3 | DAVIS J A. Mouse and rat anesthesia and analgesia[J]. Curr Protoc Neurosci, 2008, Appendix 4: Appendix 4B. DOI:10.1002/0471142301.nsa04bs42 . |
4 | DOWNING F, GIBSON S. Anaesthesia of brachycephalic dogs[J]. J Small Anim Pract, 2018, 59(12):725-733. DOI:10.1111/jsap.12948 . |
5 | IWASAKI K, SUDO H, YAMADA K, et al. Effects of single injection of local anesthetic agents on intervertebral disc degeneration: ex vivo and long-term in vivo experimental study[J]. PLoS One, 2014, 9(10): e109851. DOI:10.1371/journal.pone.0109851 . |
6 | ECKHARDT E T, GRELIS M E, TABACHNICK I I. Effect of some analgesic and anti-inflammatory agents on sodium pentobarbital anesthesia[J]. Proc Soc Exp Biol Med, 1958, 98(2):423-424. DOI:10.3181/00379727-98-24065 . |
7 | HASPEL H C, STEPHENSON K N, DAVIES-HILL T, et al. Effects of barbiturates on facilitative glucose transporters are pharmacologically specific and isoform selective[J]. J Membr Biol, 1999, 169(1):45-53. DOI:10.1007/pl00005900 . |
8 | CLARK P W, JENKINS A B, KRAEGEN E W. Pentobarbital reduces basal liver glucose output and its insulin suppression in rats[J]. Am J Physiol, 1990, 258(4 Pt 1):E701-707. DOI:10.1152/ajpendo.1990.258.4.E701 . |
9 | LIU G, CULL G, WANG L, et al. Hypercapnia impairs vasoreactivity to changes in blood pressure and intraocular pressure in rat retina[J]. Optom Vis Sci, 2019, 96(7):470-476. DOI:10.1097/OPX.0000000000001400 . |
10 | ERHARDT W, HEBESTEDT A, ASCHENBRENNER G, et al. A comparative study with various anesthetics in mice (pentobarbitone, ketamine-xylazine, carfentanyl-etomidate)[J]. Res Exp Med (Berl), 1984, 184(3):159-169. DOI:10.1007/BF01852390 . |
11 | NOWACKA A, BORCZYK M. Ketamine applications beyond anesthesia: A literature review[J]. Eur J Pharmacol, 2019, 860:172547. DOI:10.1016/j.ejphar.2019.172547 . |
12 | DURRANI Z, WINNIE A P, ZSIGMOND E K, et al. Ketamine for intravenous regional anesthesia[J]. Anesth Analg, 1989, 68(3):328-332. |
13 | BROWNLEE R D, KASS P H, SAMMAK R L. Blood pressure reference intervals for ketamine-sedated rhesus macaques (Macaca mulatta)[J]. J Am Assoc Lab Anim Sci, 2020, 59(1):24-29. DOI:10.30802/AALAS-JAALAS-19-000072 . |
14 | JANG H S, KWON Y S, LEE M G, et al. The effect of tiletamine/zolazepam (Zoletile) combination with xylazine or medetomidine on electroencephalograms in dogs[J]. J Vet Med Sci, 2004, 66(5):501-507. DOI:10.1292/jvms.66.501 . |
15 | LEE M C, LEE C H, HONG S L, et al. Establishment of a rabbit model of obstructive sleep apnea by paralyzing the genioglossus[J]. JAMA Otolaryngol Head Neck Surg, 2013, 139(8):834-840. DOI:10.1001/jamaoto.2013.4001 . |
16 | POPIK P, HOŁUJ M, KOS T, et al. Comparison of the psychopharmacological effects of tiletamine and ketamine in rodents[J]. Neurotox Res, 2017, 32(4):544-554. DOI:10.1007/s12640-017-9759-0 . |
17 | MEYER R E, FISH R E. A review of tribromoethanol anesthesia for production of genetically engineered mice and rats[J]. Lab Anim (NY), 2005, 34(10):47-52. DOI:10.1038/laban1105-47 . |
18 | PAPAIOANNOU V E, FOX J G. Efficacy of tribromoethanol anesthesia in mice[J]. Lab Anim Sci, 1993, 43(2):189-192. |
19 | CAMPOS S, MONTEIRO J, VALENZUELA B, et al. Evidence of different propofol pharmacokinetics under short and prolonged infusion times in rabbits[J]. Basic Clin Pharmacol Toxicol, 2016, 118(6):421-431. DOI:10.1111/bcpt.12521 . |
20 | HE F Y, FENG W Z, ZHONG J, et al. Effects of propofol and dexmedetomidine anesthesia on Th1/Th2 of rat spinal cord injury[J]. Eur Rev Med Pharmacol Sci, 2017, 21(6):1355-1361. |
21 | MOTSCH J, ROGGENBACH J. Propofol infusions syndrom[J]. Anaesthesist, 2004, 53(10):1009-1024. DOI:10.1007/s00101-004-0756-3 . |
22 | BELLMAN M H, PLEUVRY B J. Comparison of the respiratory effects of ICI 35 868 and thiopentone in the rabbit[J]. Br J Anaesth, 1981, 53(4):425-429. DOI:10.1093/bja/53.4.425 . |
23 | WILSON M E, KARAOUI M, DJASIM L AL, et al. The safety and efficacy of chloral hydrate sedation for pediatric ophthalmic procedures: a retrospective review[J]. J Pediatr Ophthalmol Strabismus, 2014, 51(3):154-159. DOI:10.3928/01913913-20140311-01 . |
24 | SILVERMAN J, MUIR W W 3rd. A review of laboratory animal anesthesia with chloral hydrate and chloralose[J]. Lab Anim Sci, 1993, 43(3):210-216. |
25 | SOTOMAYOR R E, COLLINS T F. Mutagenicity, metabolism, and DNA interactions of urethane[J]. Toxicol Ind Health, 1990, 6(1):71-108. DOI:10.1177/074823379000600106 . |
26 | FIELD K J, LANG C M. Hazards of urethane (ethyl carbamate): a review of the literature[J]. Lab Anim, 1988, 22(3):255-262. DOI:10.1258/002367788780746331 . |
27 | MERO M, VAINIONPÄÄ S, VASENIUS J, et al. Medetomidine: ketamine: diazepam anesthesia in the rabbit[J]. Acta Vet Scand Suppl, 1989, 85:135-137. |
28 | ALVES H N C, SILVA A L M DA, OLSSON I A S, et al. Anesthesia with intraperitoneal propofol, medetomidine, and fentanyl in rats[J]. J Am Assoc Lab Anim Sci, 2010, 49(4):454-459. |
29 |
GÓMEZ DE SEGURA IA, TENDILLO FJ, MASCÍAS A, et al. Actions of xylazine in young swine[J]. Am J Vet Res, 1997, 58(1):99-102. PMID: .
PMID |
30 | MIWA Y, TSUBOTA K, KURIHARA T. Effect of midazolam, medetomidine, and butorphanol tartrate combination anesthetic on electroretinograms of mice[J]. Mol Vis, 2019, 25:645-653. |
31 | GREENE S A, THURMON J C. Xylazine: a review of its pharmacology and use in veterinary medicine[J]. J Vet Pharmacol Ther, 1988, 11(4):295-313. DOI:10.1111/j.1365-2885.1988.tb00189.x . |
32 | ROALDSEN M, CIOSEK, RICHARDSEN E, et al. Isoflurane increases tolerance to renal ischemia reperfusion injury compared to propofol: an experimental study in pigs[J]. J Investig Surg, 2021, 34(4):359-365. DOI:10.1080/08941939. 2019.1637038 . |
33 | SMITH J C, CORBIN T J, MCCABE J G, et al. Isoflurane with morphine is a suitable anaesthetic regimen for embryo transfer in the production of transgenic rats[J]. Lab Anim, 2004, 38(1):38-43. DOI:10.1258/00236770460734371 . |
34 | STOELTING R K, LONGNECKER D E, EGER E I 2nd. Minimum alveolar concentrations in man on awakening from methoxyflurane, halothane, ether and fluroxene anesthesia: MAC awake[J]. Anesthesiology, 1970, 33(1):5-9. DOI:10.1097/00000542-197007000-00004 . |
35 | YILDIRIM F, YILDIRIM B A, YILDIZ A, et al. Evaluation of perlite, wood shavings and corncobs for bedding material in rats[J]. J S Afr Vet Assoc, 2017, 88(0): e1-e7. DOI:10.4102/jsava.v88i0.1492 . |
36 | JIRON J M, MENDIETA CALLE J L, CASTILLO E J, et al. Comparison of isoflurane, ketamine-dexmedetomidine, and ketamine-xylazine for general anesthesia during oral procedures in rice rats (Oryzomys palustris)[J]. J Am Assoc Lab Anim Sci, 2019, 58(1):40-49. DOI:10.30802/AALAS-JAALAS-18-000032 . |
37 | AGUIAR-ALVES F, LE H N, TRAN V G, et al. Anti-virulence bispecific monoclonal antibody mediated protection against Pseudomonas aeruginosa ventilator-associated pneumonia in a rabbit model[J]. Antimicrob Agents Chemother, 2021(2021-12-13)[2022-01-10]. . |
38 | ERHARDT W. Anesthesia procedures in the rabbit[J]. Tierarztl Prax, 1984, 12(3):391-402. |
39 | BURGOS-RODRIGUEZ A G. Zoonotic diseases of primates[J]. Vet Clin North Am Exot Anim Pract, 2011, 14(3):557-575, viii. DOI:10.1016/j.cvex.2011.05.006 . |
40 | BARBOSA PEREIRA C, DOHMEIER H, KUNCZIK J, et al. Contactless monitoring of heart and respiratory rate in anesthetized pigs using infrared thermography[J]. PLoS One, 2019, 14(11): e0224747. DOI:10.1371/journal.pone.0224747 . |
41 | GRUBB T, SAGER J, GAYNOR J S, et al. 2020 AAHA anesthesia and monitoring guidelines for dogs and cats[J]. J Am Anim Hosp Assoc, 2020, 56(2):59-82. DOI:10.5326/JAAHA-MS-7055 . |
42 | FOX J G, ANDERSON L C, OTTO G M, et al. Laboratory animal medicine[M]. 3rd ed. California: Academic Press, 2015. |
43 | DE CASTRO J, BOLFI F, DE CARVALHO L R, et al. The temperature and humidity in a low-flow anesthesia workstation with and without a heat and moisture exchanger[J]. Anesth Analg, 2011, 113(3):534-538. DOI:10.1213/ane. 0b013e31822402df . |
[1] | JIAO Qingzhen, WU Guihua, TANG Wen, FAN Fan, FENG Kai, YANG Chunxiang, QIAO Jian, DENG Sufang. Dynamic Monitoring and Analysis of Ammonia Concentration in Laboratory Animal Facilities Under Suspension of Heating Ventilation and Air Conditioning System [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 490-495. |
[2] | LIU Wentao, LUO Yanhong, LONG Yongxia, LUO Qihui, CHEN Zhengli, LIU Lida. Common Environmental Problems and Testing Experiences in Laboratory Animal Facilities in Sichuan Province [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 483-489. |
[3] | WANG Tingjun, LUO Hao, CHEN Qi. Discussion on AI-Based Digital Upgrade and Application Practice of Laboratory Animal Centers [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 473-482. |
[4] | TAN Dengxu, MA Yifan, LIU Ke, ZHANG Yanying, SHI Changhong. Reshaping Intercellular Interactions: Empowering the Exploration of Disease Mechanisms and Therapies Using Organoid Co-Culture Models [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 309-317. |
[5] | SHEN Huangyi, HUANG Yufei, YANG Yunpeng. Research Progress on Characteristics Analysis of Gut Microbiota and Its Sex Differences in Laboratory Animals [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 349-359. |
[6] | CAI Mengshi, SU Xing, SHAO Qiming. Implementation of "Three Simultaneities" for Occupational Health Protection Facilities in Laboratory Animal Institution Construction Project [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 221-228. |
[7] | ZHANG Qian, DENG Qingxiu, CAI Lin. Review on Occupational Health Risk Prevention and Control for Laboratory Animal Practitioners in Chinese General Universities [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 206-213. |
[8] | XU Chao, SUN Qiufang, SHAO Qiming. Establishment of Occupational Health Related Files in Laboratory Animal Institutions [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 214-220. |
[9] | SHAO Qiming, BIAN Yong, SHI Aimin. Key Points for Establishing Occupational Health and Safety Management System in Laboratory Animal Institutions [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 188-196. |
[10] | HOU Dongxia, TIE Zuoxiu, LU Yong, NAN Panpan, BAO Jie. Exploration and Practice of Safe Access System Construction for Barrier Environment Facilities of Laboratory Animals: A Case Study on Xianlin Campus of Nanjing University [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 96-100. |
[11] | LIU Wei, ZHANG Xinyan, HOU Fengtian, XU Zhongkan, MA Liying. Evaluation of Proficiency Validation Results for Air Change Rate Testing in Laboratory Animal Facilities [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 87-95. |
[12] | LIU Lida, CHEN Bing, XIE Na, LIU Li, ZHUANG Siqi, ZOU Yixing. Survey Report Analysis on Parasitic and Microbial Quality of Laboratory Animals in Sichuan Province, 2017-2023 [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 654-660. |
[13] | LIU Yishu, CAI Liping. Advances and Challenges of Using Experimental Pigs in Da Vinci Surgical Robot Training [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 667-674. |
[14] | ZHAO Lijuan, XIAO Chunlan, SHENG Yajie, LU Xi, ZHOU Zhengyu. Challenges and Development in Suzhou Laboratory Animal Industry Over the Past Five Decades [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 645-653. |
[15] | DU Xiaoyan, LIU Yunbo. Analysis of the Progress in Identification and Evaluation of Laboratory Animal Resources in China [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 469-474. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||