Laboratory Animal and Comparative Medicine ›› 2025, Vol. 45 ›› Issue (2): 167-175.DOI: 10.12300/j.issn.1674-5817.2024.120
• Animal Models of Human Diseases • Previous Articles Next Articles
LUO Shixiong1, ZHANG Sai2, CHEN Hui2()
Received:
2024-08-21
Revised:
2025-01-25
Online:
2025-04-25
Published:
2025-05-12
Contact:
CHEN Hui
CLC Number:
LUO Shixiong,ZHANG Sai,CHEN Hui. Research Progress in Establishment and Evaluation of Common Asthma Animal Models[J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 167-175. DOI: 10.12300/j.issn.1674-5817.2024.120.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2024.120
动物种类 Animal species | 优点 Advantages | 缺点 Disadvantages | 适用范围 Scope of application |
---|---|---|---|
小鼠 Mouse | 免疫遗传背景清晰、实验成本低、品系多、造模方法成熟、容易产生气道炎症、容易诱发气道高反应性、容易出现黏液增多等哮喘症状 | 和人类的气道和肺部的生理结构差异大、对过敏原易产生耐受性 | 急性期哮喘模型气道高反应及气道炎症等的研究及药物疗效观察 |
大鼠 Rat | 来源广、价格低廉、体型较大、易饲养繁殖、麻醉后稳定性高、取材方便 | 易对过敏原产生耐受性、相关分子生物学试剂不齐全 | 急慢性哮喘模型气道及肺组织生理病理观察及肺功能、气道阻力测定等相关研究 |
豚鼠 Guinea pig | 容易被致敏、肺部解剖结构和生理药理反应与人类相似 | 价格较高、个体反应差距较大、缺乏相关炎症和免疫反应的试剂和特异性分子工具 | 研究化学刺激因子过敏反应、开发皮质类固醇和β受体激动剂等药物 |
Table 1 Commonly used animals in asthma models and their advantages and disadvantages
动物种类 Animal species | 优点 Advantages | 缺点 Disadvantages | 适用范围 Scope of application |
---|---|---|---|
小鼠 Mouse | 免疫遗传背景清晰、实验成本低、品系多、造模方法成熟、容易产生气道炎症、容易诱发气道高反应性、容易出现黏液增多等哮喘症状 | 和人类的气道和肺部的生理结构差异大、对过敏原易产生耐受性 | 急性期哮喘模型气道高反应及气道炎症等的研究及药物疗效观察 |
大鼠 Rat | 来源广、价格低廉、体型较大、易饲养繁殖、麻醉后稳定性高、取材方便 | 易对过敏原产生耐受性、相关分子生物学试剂不齐全 | 急慢性哮喘模型气道及肺组织生理病理观察及肺功能、气道阻力测定等相关研究 |
豚鼠 Guinea pig | 容易被致敏、肺部解剖结构和生理药理反应与人类相似 | 价格较高、个体反应差距较大、缺乏相关炎症和免疫反应的试剂和特异性分子工具 | 研究化学刺激因子过敏反应、开发皮质类固醇和β受体激动剂等药物 |
致敏剂 Sensitizers | 优点 Advantages | 缺点 Disadvantages | 适用范围 Scope of application |
---|---|---|---|
卵清蛋白 Ovalbumin | 价格便宜,致敏效果好,给药途径多样可选 | 致敏浓度存在较大范围的差异 | 建立急慢性过敏哮喘模型 |
屋尘螨 House dust mite | 致敏后肺组织及气道炎症反应明显 | 个体反应差异大 | 建立慢性哮喘模型、嗜酸性粒细胞型哮喘模型 |
脂多糖 Lipopolysaccharide | 可通过激活多条信号通路,高效诱导细胞因子合成与释放,激发炎症反应,加重气道高反应性 | 不稳定性,常作为佐剂与卵清蛋白合用 | 建立急性期及中性粒细胞型哮喘模型 |
甲苯二异氰酸酯 Toluene diisocyanate | 是导致职业性哮喘的最常见的化学物质 | 有毒性、剂量控制要求高,成本高 | 职业性哮喘的发病特征及治疗的研究 |
Table 2 Advantages, disadvantages, and application scope of commonly used sensitizers in asthma animal models
致敏剂 Sensitizers | 优点 Advantages | 缺点 Disadvantages | 适用范围 Scope of application |
---|---|---|---|
卵清蛋白 Ovalbumin | 价格便宜,致敏效果好,给药途径多样可选 | 致敏浓度存在较大范围的差异 | 建立急慢性过敏哮喘模型 |
屋尘螨 House dust mite | 致敏后肺组织及气道炎症反应明显 | 个体反应差异大 | 建立慢性哮喘模型、嗜酸性粒细胞型哮喘模型 |
脂多糖 Lipopolysaccharide | 可通过激活多条信号通路,高效诱导细胞因子合成与释放,激发炎症反应,加重气道高反应性 | 不稳定性,常作为佐剂与卵清蛋白合用 | 建立急性期及中性粒细胞型哮喘模型 |
甲苯二异氰酸酯 Toluene diisocyanate | 是导致职业性哮喘的最常见的化学物质 | 有毒性、剂量控制要求高,成本高 | 职业性哮喘的发病特征及治疗的研究 |
1 | Global Initiative for Asthma. Summary guide for asthma management and prevention for adults, adolescents and children 6–11 years (2024): A summary guide for healthcare providers[EB/OL]. [2024-5-22]. https://ginasthma.org/wp-content/uploads/2024/12/GINA-Summary-Guide-2024-WEB-WMS.pdf. |
2 | 林苏杰, 王芳, 郝月琴, 等. «支气管哮喘防治指南(2020年版)»解读[J]. 中国临床医生杂志, 2022, 50(12):1406-1408. DOI: 10.3969/j.issn.2095-8552.2022.12.006 . |
LIN S J, WANG F, HAO Y Q, et al. Chin J Clin, 2022, 50(12):1406-1408. DOI: 10.3969/j.issn.2095-8552.2022.12.006 . | |
3 | 李泳兴, 钟鸣, 王勇, 等. 常用哮喘动物模型的建立[J]. 中国比较医学杂志, 2020, 30(11):97-101. DOI: 10.3969/j.issn.1671-7856.2020.11.016 . |
LI Y X, ZHONG M, WANG Y, et al. Establishment of common animal models of asthma[J]. Chin J Comp Med, 2020, 30(11):97-101. DOI: 10.3969/j.issn.1671-7856.2020.11.016 . | |
4 | 何婷, 钱佩瑶, 洪敏, 等. 诱发支气管哮喘动物模型气道重塑特征的方法和评价[J]. 中国实验动物学报, 2022, 30(1):117-123. DOI: 10.3969/j.issn.1005-4847.2022.01.015 . |
HE T, QIAN P Y, HONG M, et al. Methods and evaluation of airway remodeling characteristics in animal models of bronchial asthma[J]. Acta Lab Anim Sci Sin, 2022, 30(1):117-123. DOI: 10.3969/j.issn.1005-4847.2022.01.015 . | |
5 | YASUDA Y, NAGANO T, KOBAYASHI K, et al. Group 2 innate lymphoid cells and the house dust mite-induced asthma mouse model[J]. Cells, 2020, 9(5):1178. DOI:10.3390/cells9051178 . |
6 | GREGORCZYK I, MAŚLANKA T. Blockade of RANKL/RANK and NF-ĸB signalling pathways as novel therapeutic strategies for allergic asthma: a comparative study in a mouse model of allergic airway inflammation[J]. Eur J Pharmacol, 2020, 879:173129. DOI:10.1016/j.ejphar.2020.173129 . |
7 | BRANDT E B, BOLCAS P E, RUFF B P, et al. IL33 contributes to diesel pollution-mediated increase in experimental asthma severity[J]. Allergy, 2020, 75(9):2254-2266. DOI:10.1111/all.14181 . |
8 | ASAYAMA K, KOBAYASHI T, D'ALESSANDRO-GABAZZA C N, et al. Protein S protects against allergic bronchial asthma by modulating Th1/Th2 balance[J]. Allergy, 2020, 75(9):2267-2278. DOI:10.1111/all.14261 . |
9 | PARK S C, KIM H, BAK Y, et al. An alternative dendritic cell-induced murine model of asthma exhibiting a robust Th2/Th17-skewed response[J]. Allergy Asthma Immunol Res, 2020, 12(3):537-555. DOI:10.4168/aair.2020.12.3.537 . |
10 | 章谦男, 肖欢, 李劳冬, 等. 不同品系小鼠哮喘模型的建立与比较[J]. 广西医科大学学报, 2022, 39(2):256-261. DOI: 10.16190/j.cnki.45-1211/r.2022.02.013 . |
ZHANG Q N, XIAO H, LI L D, et al. Establishment and comparison of asthma models in different strains of mice[J]. J Guangxi Med Univ, 2022, 39(2):256-261. DOI: 10.16190/j.cnki.45-1211/r.2022.02.013 . | |
11 | KUMAR R K, FOSTER P S. Modeling allergic asthma in mice: pitfalls and opportunities[J]. Am J Respir Cell Mol Biol, 2002, 27(3):267-272. DOI:10.1165/rcmb.F248 . |
12 | FULKERSON P C, ROTHENBERG M E, HOGAN S P. Building a better mouse model: experimental models of chronic asthma[J]. Clin Exp Allergy, 2005, 35(10):1251-1253. DOI:10.1111/j.1365-2222.2005.02354.x . |
13 | GONG C X, PAN L Y, JIANG Y K, et al. Investigating the mechanism of action of Yanghe Pingchuan Granule in the treatment of bronchial asthma based on bioinformatics and experimental validation[J]. Heliyon, 2023, 9(11): e21936. DOI:10.1016/j.heliyon.2023.e21936 . |
14 | TSCHERNIG T, NEUMANN D, PICH A, et al. Experimental bronchial asthma- the strength of the species rat[J]. Curr Drug Targets, 2008, 9(6):466-469. DOI:10.2174/138945008784533543 . |
15 | 妥海燕, 王志旺, 任远, 等. 卵清白蛋白复制哮喘动物模型的方法及评价研究进展[J]. 甘肃中医药大学学报, 2016, 33(1):71-74. DOI: 10.16841/j.issn1003-8450.2016.01.23 . |
TUO H Y, WANG Z W, REN Y, et al. Research progress on the method and evaluation of replicating asthma animal model with ovalbumin[J]. J Gansu Univ Chin Med, 2016, 33(1):71-74. DOI: 10.16841/j.issn1003-8450 . | |
16 | 欧梁, 宋莹, 李萍, 等. PCA试验中SD大鼠和Wistar大鼠对卵蛋白和牛血清白蛋白敏感性的差异[J]. 中国药理学与毒理学杂志, 2013, 27():104-105. |
OU L, SONG Y, LI P, et al. The difference in sensitivity of SD rats and Wistar rats to ovalbumin and bovine serum albumin in PCA experiment [J]. Chin J Pharmacol Toxicol. 2013, 27():104-105. | |
17 | 丁云录, 郑明昱, 南敏伦, 等. 基于ERK信号通路探讨鹿茸大补汤颗粒对哮喘缓解期豚鼠的调控及作用机制[J]. 中国老年学杂志, 2023, 43(21):5309-5313. DOI:10.3969/j.issn.1005-9202.2023.21.054 . |
DING Y L, ZHENG M Y, NAN M L, et al. Based on ERK signal pathway, this paper discusses the regulation and mechanism of Lulong Dabutang Granule on guinea pigs with asthma in remission stage[J]. Chin J Gerontol, 2023, 43(21):5309-5313. DOI:10.3969/j.issn.1005-9202.2023.21.054 . | |
18 | ADNER M, CANNING B J, MEURS H, et al. Back to the future: re-establishing guinea pig in vivo asthma models[J]. Clin Sci, 2020, 134(11):1219-1242. DOI:10.1042/CS20200394 . |
19 | WOODROW J S, SHEATS M K, COOPER B, et al. Asthma: the use of animal models and their translational utility[J]. Cells, 2023, 12(7):1091. DOI:10.3390/cells12071091 . |
20 | 付晓, 覃骊兰, 钟海森, 等. 过敏性哮喘中医证候模型研究进展及评价[J]. 中国中医药信息杂志, 2019, 26(8):133-136. DOI: 10.3969/j.issn.1005-5304.2019.08.029 . |
FU X, QIN L L, ZHONG H S, et al. Research progress and evaluation about TCM syndrome models of allergic asthma[J]. Chin J Inf Tradit Chin Med, 2019, 26(8):133-136. DOI: 10.3969/j.issn.1005-5304.2019.08.029 . | |
21 | 陈馨馨, 李友林. 卵蛋白致敏新西兰家兔建立支气管哮喘模型[J]. 中华中医药学刊, 2011, 29(3):473-475. DOI: 10.13193/j.archtcm.2011.03.27.chenxx.068 . |
CHEN X X, LI Y L. Giving New Zealand rabbits celiac injection with ovalbumin to simulate bronchial asthma model[J]. Chin Arch Tradit Chin Med, 2011, 29(3):473-475. DOI: 10.13193/j.archtcm.2011.03.27.chenxx.068 . | |
22 | CHEN R C, ZHANG Q L, CHEN S Y, et al. IL-17F, rather than IL-17A, underlies airway inflammation in a steroid-insensitive toluene diisocyanate-induced asthma model[J]. Eur Respir J, 2019, 53(4):1801510. DOI:10.1183/13993003.01510-2018 . |
23 | NIALS A T, UDDIN S. Mouse models of allergic asthma: acute and chronic allergen challenge[J]. Dis Model Mech, 2008, 1(4-5):213-220. DOI:10.1242/dmm.000323 . |
24 | 王思齐, 包凯帆, 王晓钰, 等. 抗生素呼吸道给药加重小鼠过敏性哮喘模型的建立[J]. 中国比较医学杂志, 2019, 29(8):37-43. DOI: 10.3969/j.issn.1671-7856.2019.08.006 . |
WANG S Q, BAO K F, WANG X Y, et al. Establishment of an allergic asthma model in mice using antibiotics administered via the respiratory tract[J]. Chin J Comp Med, 2019, 29(8):37-43. DOI: 10.3969/j.issn.1671-7856.2019.08.006 . | |
25 | 黄超文, 赵强, 钟莲娣, 等. 三种哮喘小鼠动物模型的对比研究[J]. 齐齐哈尔医学院学报, 2019, 40(11):1321-1323. DOI:10.3969/j.issn.1002-1256.2019.11.001 . |
HUANG C W, ZHAO Q, ZHONG L D, et al. Comparative study on three animal models of asthma in mice[J]. J Qiqihar Med Univ, 2019, 40(11):1321-1323. DOI:10.3969/j.issn.1002-1256.2019.11.001 . | |
26 | 崔海燕.AKT抑制剂MK2206对TDI哮喘小鼠气道炎症和气道重塑的作用及机制研究[D]. 广州: 南方医科大学,2020.DOI:10.27003/d.cnki.gojyu.2020.000845 . |
CUI H Y. Effect and mechanism of AKT inhibitor MK2206 on airway inflammation and airway remodeling in TDI asthma mice[D]. Guangzhou: Southern Medical University, 2020. DOI:10.27003/d.cnki.gojyu.2020.000845 . | |
27 | PARK H J, OH E Y, PARK Y H, et al. Potential of serum soluble CD93 as a biomarker for asthma in an ovalbumin-induced asthma murine model[J]. Biomarkers, 2018, 23(5):446-452. DOI:10.1080/1354750X.2018.1443510 . |
28 | 雷俊, 卢丽君, 罗玲艳, 等. 吴茱萸碱对哮喘模型大鼠炎症及上皮细胞凋亡的影响及机制[J]. 中国药房, 2024, 35(11):1351-1356. DOI: 10.6039/j.issn.1001-0408.2024.11.12 . |
LEI J, LU L J, LUO L Y, et al. Effects of evodiamine on inflammation and apoptosis of airway epithelial cells in asthma model rats and its mechanism[J]. China Pharm, 2024, 35(11):1351-1356. DOI: 10.6039/j.issn.1001-0408.2024.11.12 . | |
29 | 陈颖. 支气管哮喘动物实验模型的研究现状[J]. 国外医学呼吸系统分册, 2000, 20(3):154-156. DOI: 10.3760/cma.j.issn.1673-436X.2000.03.016 . |
CHEN Y. Research status of animal experimental model of bronchial asthma[J]. Foreign Med Sci Sect Respir Syst, 2000, 20(3):154-156. DOI: 10.3760/cma.j.issn.1673-436X.2000.03.016 . | |
30 | JI Y, FAN L, WU G H, et al. Spleen aminopeptides (FUKETUO) elevate the therapeutic effect of house dust mite desensitization on allergic asthma by inducing interleukin-10 positive regulatory T cells (IL-10+ Tregs) expression[J]. J Thorac Dis, 2024, 16(9):5981-5994. DOI:10.21037/jtd-24-398 . |
31 | 郭妍蓉, 严彦. 二甲双胍和孟鲁司特在急性和慢性过敏性哮喘小鼠模型中的作用[J]. 中山大学学报(医学科学版), 2022, 43(6):905-915. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0606 . |
GUO Y R, YAN Y. Effects of metformin and montelukast in acute and chronic allergic asthma mouse models[J]. J Sun Yat-sen Univ (Med Sci), 2022, 43(6):905-915. DOI: 10.13471/j.cnki.j.sun.yat-sen.univ(med.sci).2022.0606 . | |
32 | JONCKHEERE A C, SEYS S F, STEELANT B, et al. Innate lymphoid cells are required to induce airway hyperreactivity in a murine neutrophilic asthma model[J]. Front Immunol, 2022, 13:849155. DOI:10.3389/fimmu.2022.849155 . |
33 | LIU J Q, LIU L M, SUN J, et al. Icariin protects hippocampal neurons from endoplasmic reticulum stress and NF-κB mediated apoptosis in fetal rat hippocampal neurons and asthma rats[J]. Front Pharmacol, 2020, 10:1660. DOI:10.3389/fphar.2019.01660 . |
34 | POLLARIS L, DEVOS F, DE VOOGHT V, et al. Toluene diisocyanate and methylene diphenyl diisocyanate: asthmatic response and cross-reactivity in a mouse model[J]. Arch Toxicol, 2016, 90(7):1709-1717. DOI:10.1007/s00204-015-1606-6 . |
35 | PANDEY V, YADAV V, SINGH R, et al. β-Endorphin (an endogenous opioid) inhibits inflammation, oxidative stress and apoptosis via Nrf-2 in asthmatic murine model[J]. Sci Rep, 2023, 13(1):12414. DOI:10.1038/s41598-023-38366-5 . |
36 | 徐世军, 张三印, 代渊. 建立难治性哮喘动物模型的思路浅析[C]//中国中西医结合学会实验医学专业委员会, 华神集团技术中心, 华神集团企业博士后科研工作站. 第六次全国中西医结合实验医学学术研讨会会议论文集, 2002:312-316. |
XU S J, ZHANG S Y, DAI Y. Brief analysis of the approach to establishing a refractory asthma animal model[C]//Experimental Medicine Professional Committee of the China Society of Integrated Traditional Chinese and Western Medicine, Huashen Group Technology Center, Huashen Group Corporate Postdoctoral Research Station. Conference proceedings of the sixth national symposium on integrated traditional Chinese and Western medicine experimental medicine, 2002:312-316. | |
37 | 文莎, 佘晖, 吴峰, 等. TGF-β1/Smads信号通路在激素抵抗型哮喘小鼠动物模型中的活化[J]. 福建医药杂志, 2023, 45(6):129-133. DOI:10.3969/j.issn.1002-2600.2023.06.044 . |
WEN S, SHE H, WU F, et al. Activation of TGF-β1/smads signal pathway in animal model of hormone resistant asthma in mice[J]. Fujian Med J, 2023, 45(6):129-133. DOI:10.3969/j.issn.1002-2600.2023.06.044 . | |
38 | KIM S R, KIM D I, KANG M R, et al. Endoplasmic reticulum stress influences bronchial asthma pathogenesis by modulating nuclear factor κB activation[J]. J Allergy Clin Immunol, 2013, 132(6):1397-1408. DOI:10.1016/j.jaci.2013.08.041 . |
39 | KHUMALO J, KIRSTEIN F, SCIBIOREK M, et al. Therapeutic and prophylactic deletion of IL-4Rα-signaling ameliorates established ovalbumin induced allergic asthma[J]. Allergy, 2020, 75(6):1347-1360. DOI: 10.1111/all.14137 . |
[1] | CHEN Yuhan, CHEN Jinling, LI Xin, OU Yanhua, WANG Si, CHEN Jingyi, WANG Xingyi, YUAN Jiali, DUAN Yuanyuan, YANG Zhongshan, NIU Haitao. Analysis of Animal Models of Myasthenia Gravis Based on Its Clinical Characteristics in Chinese and Western Medicine [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 176-186. |
[2] | LIAN Hui, JIANG Yanling, LIU Jia, ZHANG Yuli, XIE Wei, XUE Xiaoou, LI Jian. Construction and Evaluation of a Rat Model of Abnormal Uterine Bleeding [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 130-146. |
[3] | WANG Biying, LU Jiashuo, ZAN Guiying, CHEN Ruosong, CHAI Jingrui, LIU Jinggen, WANG Yujun. Establishment Methods and Application Progress of Rodent Models for Drug Addiction [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 158-166. |
[4] | FEI Bin, GUO Wenke, GUO Jianping. Research Progress on Animal Models for Hernia Diseases and New Hernia Repair Materials [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 55-66. |
[5] | YANG Jiahao, DING Chunlei, QIAN Fenghua, SUN Qi, JIANG Xusheng, CHEN Wen, SHEN Mengwen. Research Progress on Animal Models of Sepsis-Related Organ Injury [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 636-644. |
[6] | SUN Xiaorong, SU Dan, GUI Wenjuan, CHEN Yue. Establishment and Evaluation of a Moderate-to-Severe Knee Osteoarthritis Model in Rats Induced by Surgery [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 597-604. |
[7] | TIAN Fang, PAN Bin, SHI Jiayi, XU Yanyi, LI Weihua. Advances in Development of PM2.5-Exposed Animal Models and Their Application in Reproductive Toxicity Research [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 626-635. |
[8] | ZHAO Xiaona, WANG Peng, YE Maoqing, QU Xinkai. Establishment of a New Hyperglycemic Obesity Cardiac Dysfunction Mouse Model with Triacsin C [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 605-612. |
[9] | TU Yingxin, JI Yilan, WANG Fei, YANG Dongming, WANG Dongdong, SUN Zhixin, DAI Yuexin, WANG Yanji, Guanghan KAN, WU Bin, ZHAO Deming, YANG Lifeng. Evaluation of Simulated Weightlessness Model of Hindlimb Unloading Miniature Pigs and Their Tissue Damage [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 475-486. |
[10] | HUANG Dongyan, WU Jianhui. Establishment Methods and Application Evaluation of Animal Models in Reproductive Toxicology Research [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 550-559. |
[11] | ZHENG Yiqing, DENG Yasheng, FAN Yanping, LIANG Tianwei, HUANG Hui, LIU Yonghui, NI Zhaobing, LIN Jiang. Application Analysis of Animal Models for Pelvic Inflammatory Disease Based on Data Mining [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 405-418. |
[12] | WU Yue, LI Lu, ZHANG Yang, WANG Jue, FENG Tingting, LI Yitong, WANG Kai, KONG Qi. Integrative Analysis of Omics Data in Animal Models of Coronavirus Infection [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 357-373. |
[13] | DING Tiansong, XIE Jinghong, YANG Bin, LI Heqiao, QIAO Yizhuo, CHEN Xinru, TIAN Wenfan, LI Jiapei, ZHANG Wanyi, LI Fanxuan. Characteristics Evaluation and Application Analysis on Animal Models of Recurrent Spontaneous Abortion [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 393-404. |
[14] | Guangyuan YAO, Ping DONG, Hao WU, Mei BAI, Ying DANG, Yue WANG, Kai HU. Research Progress on Animal Models of Long Bone Fractures [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 289-296. |
[15] | Fangqi BAO, Haiye TU, Mingsun FANG, Qian ZHANG, Minli CHEN. Advances in Research on Pathological and Molecular Mechanism of Hyperuricemic Nephropathy Based on Animal Models [J]. Laboratory Animal and Comparative Medicine, 2024, 44(2): 180-191. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||