Laboratory Animal and Comparative Medicine ›› 2021, Vol. 41 ›› Issue (6): 493-500.DOI: 10.12300/j.issn.1674-5817.2021-027
• Animal Models of Human Diseases • Previous Articles Next Articles
SONG Weijie1,2, ZHOU Yan1, NIU Ruifang1
Received:
2021-01-31
Revised:
2021-09-08
Online:
2021-12-25
Published:
2021-12-25
Contact:
SONG Weijie, E-mail: songwj_666@163.com
CLC Number:
SONG Weijie,ZHOU Yan,NIU Ruifang. Application of Laboratory Animal Models in Cancer Precision Medicine Research[J]. Laboratory Animal and Comparative Medicine, 2021, 41(6): 493-500. DOI: 10.12300/j.issn.1674-5817.2021-027.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2021-027
[1] 郭琪, 袁明慧, 郭宇飞. 乳腺癌骨转移动物模型建立方法综述[J]. 中医临床研究, 2019, 11(7):144-146. DOI:10.3969/j.issn.1674-7860.2019.07.059. [2] 黄可婷, 金多晨, 党旖旎, 等. 基因工程小鼠胃癌模型的研究进展[J]. 胃肠病学, 2019, 24(11):683-687. DOI:10.3969/j.issn.1008-7125.2019.11.009. [3] 韩艳珍, 白明, 康乐, 等. 基于数据挖掘的宫颈癌动物模型应用分析[J]. 中药药理与临床, 2021:1-10. DOI:10.13412/j.cnki.zyyl.20210609.006. [4] 朱杨壮壮, 邹纯朴, 陈晓, 等. 小鼠肿瘤肺转移模型及其应用进展[J]. 中国实验方剂学杂志, 2019, 25(14):25-31. DOI:10.13422/j.cnki.syfjx.20190627. [5] 郑俊超, 费鹏飞, 冯宝约, 等. BALB/c小鼠结肠癌血性腹水模型的建立及机制探讨[J]. 世界中西医结合杂志, 2019, 14(4):513-515,526. DOI:10.13935/j.cnki.sjzx.190416. [6] 杨义, 景治涛. 人源化肿瘤组织异种移植的进展[J]. 解剖科学进展, 2019, 25(4):480-483. DOI:10.16695/j.cnki.1006-2947.2019.04.034. [7] OKADA S, VAETEEWOOTTACHARN K, KARIYA R.Establishment of a patient-derived tumor xenograft model and application for precision cancer medicine[J]. Chem Pharm Bull (Tokyo), 2018, 66(3):225-230. DOI:10.1248/cpb.c17-00789. [8] FLANAGAN S P.'Nude', a new hairless gene with pleiotropic effects in the mouse[J]. Genet Res, 1966, 8(3):295-309. DOI:10.1017/s0016672300010168. [9] GOTO T.Patient-derived tumor xenograft models: toward the establishment of precision cancer medicine[J]. J Pers Med, 2020, 10(3):64. DOI:10.3390/jpm10030064. [10] LAPIDOT T, FAJERMAN Y, KOLLET O.Immune-deficient SCID and NOD/SCID mice models as functional assays for studying normal and malignant human hematopoiesis[J]. J Mol Med (Berl), 1997, 75(9):664-673. DOI:10.1007/s001090050150. [11] ITO M, HIRAMATSU H, KOBAYASHI K, et al.NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells[J]. Blood, 2002, 100(9):3175-3182. DOI:10.1182/blood-2001-12-0207. [12] KOYANAGI Y, TANAKA Y, KIRA J, et al.Primary human immunodeficiency virus type 1 viremia and central nervous system invasion in a novel hu-PBL-immunodeficient mouse strain[J]. J Virol, 1997, 71(3):2417-2424. DOI:10.1128/jvi.71.3.2417-2424.1997. [13] PFLUMIO F, IZAC B, KATZ A, et al.Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immuno-deficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells[J]. Blood, 1996, 88(10):3731-3740. [14] MALETZKI C, BOCK S, FRUH P, et al.NSG mice as hosts for oncological precision medicine[J]. Lab Invest, 2020, 100(1):27-37. DOI:10.1038/s41374-019-0298-6. [15] UEDA T, YOSHINO H, KOBAYASHI K, et al.Hematopoietic repopulating ability of cord blood CD34+ cells in NOD/Shi-scid mice[J]. Stem Cells, 2000, 18(3):204-213. DOI:10.1634/stemcells.18-3-204. [16] TENTLER J J, TAN A C, WEEKES C D, et al.Patient-derived tumour xenografts as models for oncology drug development[J]. Nat Rev Clin Oncol, 2012, 9(6):338-350. DOI:10.1038/nrclinonc.2012.61. [17] ZHOU Q, FACCIPONTE J, JIN M, et al.Humanized NOD-SCID IL2rg-/- mice as a preclinical model for cancer research and its potential use for individualized cancer therapies[J]. Cancer Lett, 2014, 344(1):13-19. DOI:10.1016/j.canlet.2013.10.015. [18] JACKSON S E, CHESTER J D.Personalised cancer medicine[J]. Int J Cancer, 2015, 137(2):262-266. DOI:10.1002/ijc.28940. [19] JANIAUD P, SERGHIOU S, IOANNIDIS J P A. New clinical trial designs in the era of precision medicine: an overview of definitions, strengths, weaknesses, and current use in oncology[J]. Cancer Treat Rev, 2019, 73:20-30. DOI:10.1016/j.ctrv.2018.12.003. [20] GOLEBIEWSKA A, HAU A C, OUDIN A, et al.Patient-derived organoids and orthotopic xenografts of primary and recurrent gliomas represent relevant patient avatars for precision oncology[J]. Acta Neuropathol, 2020, 140(6):919-949. DOI:10.1007/s00401-020-02226-7. [21] WISE H C, SOLIT D B.Precision oncology: three small steps forward[J]. Cancer Cell, 2019, 35(6):825-826. DOI:10.1016/j.ccell.2019.05.009. [22] LIN S Y, CHANG HSU Y, PENG Y H, et al.Discovery of a furanopyrimidine-based epidermal growth factor receptor inhibitor (DBPR112) as a clinical candidate for the treatment of non-small cell lung cancer[J]. J Med Chem, 2019, 62(22):10108-10123. DOI:10.1021/acs.jmedchem.9b00722. [23] HIDALGO M, AMANT F, BIANKIN A V, et al.Patient-derived xenograft models: an emerging platform for translational cancer research[J]. Cancer Discov, 2014, 4(9):998-1013. DOI:10.1158/2159-8290.cd-14-0001. [24] STEBBING J, PAZ K, SCHWARTZ GK, et al.Patient-derived xenografts for individualized care in advanced sarcoma[J]. Cancer, 2014, 120(22):3588. [25] YARLA N S, MADKA V, PATHURI G, et al.Molecular targets in precision chemoprevention of colorectal cancer: an update from pre-clinical to clinical trials[J]. Int J Mol Sci, 2020, 21(24):9609. DOI:10.3390/ijms21249609. [26] COLLINS D C, SUNDAR R, LIM J S J, et al. Towards precision medicine in the clinic: from biomarker discovery to novel therapeutics[J]. Trends Pharmacol Sci, 2017, 38(1):25-40. DOI:10.1016/j.tips.2016.10.012. [27] CHO S Y, KANG W, HAN J Y, et al.An integrative approach to precision cancer medicine using patient-derived xenografts[J]. Mol Cells, 2016, 39(2):77-86. DOI:10.14348/molcells.2016.2350. [28] WITKIEWICZ A K, BALAJI U, ESLINGER C, et al.Integrated patient-derived models delineate individualized therapeutic vulnerabilities of pancreatic cancer[J]. Cell Rep, 2016, 16(7):2017-2031. DOI:10.1016/j.celrep.2016.07.023. [29] GONÇALVES A, BERTUCCI F, GUILLE A, et al. Targeted NGS, array-CGH, and patient-derived tumor xenografts for precision medicine in advanced breast cancer: a single-center prospective study[J]. Oncotarget, 2016, 7(48):79428-79441. DOI:10.18632/oncotarget.12714. [30] ERRIQUEZ J, OLIVERO M, MITTICA G, et al.Xenopatients show the need for precision medicine approach to chemotherapy in ovarian cancer[J]. Oncotarget, 2016, 7(18):26181-26191. DOI:10.18632/oncotarget.8325. [31] FRANCIS O L, MILFORD T A M, BELDIMAN C, et al. Fine-tuning patient-derived xenograft models for precision medicine approaches in leukemia[J]. J Investig Med, 2016, 64(3):740-744. DOI:10.1136/jim-2016-000076. [32] SIVANAND S, PEÑA-LLOPIS S, ZHAO H, et al. A validated tumorgraft model reveals activity of dovitinib against renal cell carcinoma[J]. Sci Transl Med, 2012, 4(137):137ra75. DOI:10.1126/scitranslmed.3003643. [33] BERTOTTI A, MIGLIARDI G, GALIMI F, et al.A molecularly annotated platform of patient-derived xenografts ("xenopatients") identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer[J]. Cancer Discov, 2011, 1(6):508-523. DOI:10.1158/2159-8290.cd-11-0109. [34] MIGLIARDI G, SASSI F, TORTI D, et al.Inhibition of MEK and PI3K/mTOR suppresses tumor growth but does not cause tumor regression in patient-derived xenografts of RAS-mutant colorectal carcinomas[J]. Clin Cancer Res, 2012, 18(9):2515-2525. DOI:10.1158/1078-0432.ccr-11-2683. [35] SEBASTIANI V, RICCI F, RUBIO-VIQUIERA B, et al.Immunohistochemical and genetic evaluation of deoxycytidine kinase in pancreatic cancer: relationship to molecular mechanisms of gemcitabine resistance and survival[J]. Clin Cancer Res, 2006, 12(8):2492-2497. DOI:10.1158/1078-0432.ccr-05-2655. [36] DAS THAKUR M, SALANGSANG F, LANDMAN A S, et al.Modelling vemurafenib resistance in melanoma reveals a strategy to forestall drug resistance[J]. Nature, 2013, 494(7436):251-255. DOI:10.1038/nature11814. [37] KORTMANN U, MCALPINE J N, XUE H, et al.Tumor growth inhibition by olaparib in BRCA2 germline-mutated patient-derived ovarian cancer tissue xenografts[J]. Clin Cancer Res, 2011, 17(4):783-791. DOI:10.1158/1078-0432.ccr-10-1382. [38] SCOTT C L, BECKER M A, HALUSKA P, et al.Patient-derived xenograft models to improve targeted therapy in epithelial ovarian cancer treatment[J]. Front Oncol, 2013, 3:295. DOI:10.3389/fonc.2013.00295. [39] GELMON K A, TISCHKOWITZ M, MACKAY H, et al.Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study[J]. Lancet Oncol, 2011, 12(9):852-861. DOI:10.1016/s1470-2045(11)70214-5. [40] Fiebig HH, Schuchhardt C, Henss H, et al. Comparison of tumor response in nude mice and in the patients[J]. Behring Inst Mitt, 1984, 74:343-52. PMID: 6477362. [41] MATTERN J, BAK M, HAHN E W, et al.Human tumor xenografts as model for drug testing[J]. Cancer Metastasis Rev, 1988, 7(3):263-284. DOI:10.1007/bf00047755. [42] NÉMATI F, SASTRE-GARAU X, LAURENT C, et al. Establishment and characterization of a panel of human uveal melanoma xenografts derived from primary and/or metastatic tumors[J]. Clin Cancer Res, 2010, 16(8):2352-2362. DOI:10.1158/1078-0432.CCR-09-3066. [43] PETERSON J K, HOUGHTON P J.Integrating pharmacology and [44] WONG H, CHOO E F, ALICKE B, et al.Antitumor activity of targeted and cytotoxic agents in murine subcutaneous tumor models correlates with clinical response[J]. Clin Cancer Res, 2012, 18(14):3846-3855. DOI:10.1158/1078-0432.ccr-12-0738. [45] OKADA S, VAETEEWOOTTACHARN K, KARIYA R.Establishment of a patient-derived tumor xenograft model and application for precision cancer medicine[J]. Chem Pharm Bull (Tokyo), 2018, 66(3):225-230. DOI:10.1248/cpb.c17-00789. [46] MORTON C L, HOUGHTON P J.Establishment of human tumor xenografts in immunodeficient mice[J]. Nat Protoc, 2007, 2(2):247-250. DOI:10.1038/nprot.2007.25. [47] SEGRE J A, NEMHAUSER J L, TAYLOR B A, et al.Positional cloning of the nude locus: genetic, physical, and transcription maps of the region and mutations in the mouse and rat[J]. Genomics, 1995, 28(3):549-559. DOI:10.1006/geno.1995.1187. [48] JHAPPAN C, MORSE H C, FLEISCHMANN R D, et al.DNA-PKcs: a T-cell tumour suppressor encoded at the mouse scid locus[J]. Nat Genet, 1997, 17(4):483-486. DOI:10.1038/ng1297-483. [49] LAROCHELLE A, VORMOOR J, HANENBERG H, et al.Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: Implications for gene therapy[J]. Nat Med, 1996, 2(12):1329-1337. DOI:10.1038/nm1296-1329. [50] SHULTZ L D, GOODWIN N, ISHIKAWA F, et al.Human cancer growth and therapy in immunodeficient mouse models[J]. Cold Spring Harb Protoc, 2014, 2014(7):694-708. DOI:10.1101/pdb.top073585. [51] ZHANG X, CLAERHOUT S, PRAT A, et al.A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models[J]. Cancer Res, 2013, 73(15):4885-4897. DOI:10.1158/0008-5472.can-12-4081. [52] HOFFMAN R M.Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts[J]. Nat Rev Cancer, 2015, 15(8):451-452. DOI:10.1038/nrc3972. [53] BYRNE A T, ALFÉREZ D G, AMANT F, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts[J]. Nat Rev Cancer, 2017, 17(4):254-268. DOI:10.1038/nrc.2016.140. [54] 卓莹, 吴一龙, 郭爱林, 等. 荷人肺癌小鼠皮下移植瘤模型的建立及其生物学特性初探[J]. 中国肺癌杂志, 2010, 13(6):568-574. [55] 吴君正, 汤骥骜, 李汉贤. rhGH对人直肠癌小鼠肾包膜下移植瘤生长的影响[J]. 中国热带医学, 2007, 7(6):870-871,880. [56] OKADA S, GOTO H, YOTSUMOTO M.Current status of treatment for primary effusion lymphoma[J]. Intractable Rare Dis Res, 2014, 3(3):65-74. DOI:10.5582/irdr.2014.01010. [57] SHOEMAKER R H.The NCI60 human tumour cell line anticancer drug screen[J]. Nat Rev Cancer, 2006, 6(10):813-823. DOI:10.1038/nrc1951. [58] GAO H, KORN J M, FERRETTI S, et al.High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response[J]. Nat Med, 2015, 21(11):1318-1325. DOI:10.1038/nm.3954. [59] SAITO Y, ELLEGAST J M, RAFIEI A, et al.Peripheral blood CD34+ cells efficiently engraft human cytokine knock-in mice[J]. Blood, 2016, 128(14):1829-1833. DOI:10.1182/blood-2015-10-676452. |
[1] | JIAO Qingzhen, WU Guihua, TANG Wen, FAN Fan, FENG Kai, YANG Chunxiang, QIAO Jian, DENG Sufang. Dynamic Monitoring and Analysis of Ammonia Concentration in Laboratory Animal Facilities Under Suspension of Heating Ventilation and Air Conditioning System [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 490-495. |
[2] | LIU Wentao, LUO Yanhong, LONG Yongxia, LUO Qihui, CHEN Zhengli, LIU Lida. Common Environmental Problems and Testing Experiences in Laboratory Animal Facilities in Sichuan Province [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 483-489. |
[3] | WANG Tingjun, LUO Hao, CHEN Qi. Discussion on AI-Based Digital Upgrade and Application Practice of Laboratory Animal Centers [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 473-482. |
[4] | TAN Dengxu, MA Yifan, LIU Ke, ZHANG Yanying, SHI Changhong. Reshaping Intercellular Interactions: Empowering the Exploration of Disease Mechanisms and Therapies Using Organoid Co-Culture Models [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 309-317. |
[5] | SHEN Huangyi, HUANG Yufei, YANG Yunpeng. Research Progress on Characteristics Analysis of Gut Microbiota and Its Sex Differences in Laboratory Animals [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 349-359. |
[6] | ZHANG Qian, DENG Qingxiu, CAI Lin. Review on Occupational Health Risk Prevention and Control for Laboratory Animal Practitioners in Chinese General Universities [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 206-213. |
[7] | XU Chao, SUN Qiufang, SHAO Qiming. Establishment of Occupational Health Related Files in Laboratory Animal Institutions [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 214-220. |
[8] | SHAO Qiming, BIAN Yong, SHI Aimin. Key Points for Establishing Occupational Health and Safety Management System in Laboratory Animal Institutions [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 188-196. |
[9] | CAI Mengshi, SU Xing, SHAO Qiming. Implementation of "Three Simultaneities" for Occupational Health Protection Facilities in Laboratory Animal Institution Construction Project [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 221-228. |
[10] | HOU Dongxia, TIE Zuoxiu, LU Yong, NAN Panpan, BAO Jie. Exploration and Practice of Safe Access System Construction for Barrier Environment Facilities of Laboratory Animals: A Case Study on Xianlin Campus of Nanjing University [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 96-100. |
[11] | LIU Wei, ZHANG Xinyan, HOU Fengtian, XU Zhongkan, MA Liying. Evaluation of Proficiency Validation Results for Air Change Rate Testing in Laboratory Animal Facilities [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 87-95. |
[12] | LIU Lida, CHEN Bing, XIE Na, LIU Li, ZHUANG Siqi, ZOU Yixing. Survey Report Analysis on Parasitic and Microbial Quality of Laboratory Animals in Sichuan Province, 2017-2023 [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 654-660. |
[13] | LIU Yishu, CAI Liping. Advances and Challenges of Using Experimental Pigs in Da Vinci Surgical Robot Training [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 667-674. |
[14] | ZHAO Lijuan, XIAO Chunlan, SHENG Yajie, LU Xi, ZHOU Zhengyu. Challenges and Development in Suzhou Laboratory Animal Industry Over the Past Five Decades [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 645-653. |
[15] | DU Xiaoyan, LIU Yunbo. Analysis of the Progress in Identification and Evaluation of Laboratory Animal Resources in China [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 469-474. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||