Laboratory Animal and Comparative Medicine ›› 2025, Vol. 45 ›› Issue (3): 290-299.DOI: 10.12300/j.issn.1674-5817.2024.161
• Animal Models of Human Diseases • Previous Articles Next Articles
LUO Lianlian1, YUAN Yanchun2, WANG Junling2, SHI Guangsen1,3()(
)
Received:
2024-11-04
Revised:
2025-02-13
Online:
2025-06-25
Published:
2025-07-07
Contact:
SHI Guangsen
CLC Number:
LUO Lianlian,YUAN Yanchun,WANG Junling,et al. Advances in Mouse Models of Amyotrophic Lateral Sclerosis[J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 290-299. DOI: 10.12300/j.issn.1674-5817.2024.161.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2024.161
肌萎缩侧索硬化症小鼠模型 ALS mouse model | 基因 Gene | 氨基酸改变 Amino acid substitution | 机制 Mechanism | 瘫痪 Paralysis | 认知异常 Cognitive impairment | 神经元丢失 Neuron loss | 神经胶质增生 Gliosis | 胞质包涵体 Cytoplasmic inclusion bodies | 参考文献 References |
---|---|---|---|---|---|---|---|---|---|
转基因小鼠模型 Transgenic mouse model | hSOD1 | WT | - | √ | - | √ | √ | SOD1, VAC | [ |
hSOD1 | D90A | - | - | - | √ | √ | SOD1, VAC | [ | |
hSOD1 | G93A | GOF | - | √ | √ | - | - | [ | |
hTDP-43 | WT | - | √ | - | √ | √ | TDP-43, UBI | [ | |
TDP-43 | A315T | GOF | - | √ | - | √ | TDP-43, UBI | [ | |
hTDP-43 | Q331K | LOF/GOF | - | - | √ | √ | × | [ | |
hTDP-43 | M337V | GOF | - | - | √ | √ | × | [ | |
hFUS | WT | GOF | - | √ | × | × | × | [ | |
hFUS | R521C | GOF | - | √ | - | √ | × | [ | |
hFUS | R521C | GOF | √ | - | √ | √ | × | [ | |
hFUS | ΔNLS | GOF | √ | - | √ | √ | FUS | [ | |
hC9orf72 | [500] n | GOF | √ | √ | √ | √ | DPR, RNA foci, TDP-43 | [ | |
hC9orf72 | [500] n | - | - | √ | × | √ | DPR, RNA foci | [ | |
hC9orf72 | [500] n | - | - | - | √ | √ | RNA foci | [ | |
基因敲入小鼠模型 Knock-in mouse model | TDP-43 | N390D | GOF | - | - | √ | √ | TDP-43 | [ |
TDP-43 | Q331K | GOF | × | √ | √ | - | × | [ | |
FUS | P517L | GOF | - | - | √ | √ | FUS | [ | |
FUS | Δ14 | GOF | - | - | √ | √ | FUS | [ | |
FUS | ΔNLS | - | - | - | √ | - | FUS | [ | |
C9orf72 | (GR)400或(PR)400 | - | - | - | √ | × | DPR | [ | |
CLCC1 | K298A | LOF | - | - | √ | - | TDP-43, UBI | [ | |
PCDHA9 | L700P | - | √ | - | √ | √ | TDP-43 | [ | |
腺相关病毒过表达小鼠模型 Adeno-associated virus-mediated overexpression mouse model | TDP-43 | WT | - | √ | - | √ | - | - | [ |
TDP-43 | M337V | GOF | √ | - | √ | √ | TDP-43 | [ | |
C9orf72 | [ | GOF | √ | √ | √ | √ | DPR, RNA foci, TDP-43 | [ | |
C9orf72 | [149] n | GOF | √ | √ | √ | √ | DPR, RNA foci, TDP-43 | [ | |
C9orf72 | [100] n | LOF | × | √ | √ | √ | TDP-43 | [ | |
SARM1 | V184G | - | √ | - | - | - | - | [ |
Table 1 Commonly used mouse models of amyotrophic lateral sclerosis and their phenotypic characteristics
肌萎缩侧索硬化症小鼠模型 ALS mouse model | 基因 Gene | 氨基酸改变 Amino acid substitution | 机制 Mechanism | 瘫痪 Paralysis | 认知异常 Cognitive impairment | 神经元丢失 Neuron loss | 神经胶质增生 Gliosis | 胞质包涵体 Cytoplasmic inclusion bodies | 参考文献 References |
---|---|---|---|---|---|---|---|---|---|
转基因小鼠模型 Transgenic mouse model | hSOD1 | WT | - | √ | - | √ | √ | SOD1, VAC | [ |
hSOD1 | D90A | - | - | - | √ | √ | SOD1, VAC | [ | |
hSOD1 | G93A | GOF | - | √ | √ | - | - | [ | |
hTDP-43 | WT | - | √ | - | √ | √ | TDP-43, UBI | [ | |
TDP-43 | A315T | GOF | - | √ | - | √ | TDP-43, UBI | [ | |
hTDP-43 | Q331K | LOF/GOF | - | - | √ | √ | × | [ | |
hTDP-43 | M337V | GOF | - | - | √ | √ | × | [ | |
hFUS | WT | GOF | - | √ | × | × | × | [ | |
hFUS | R521C | GOF | - | √ | - | √ | × | [ | |
hFUS | R521C | GOF | √ | - | √ | √ | × | [ | |
hFUS | ΔNLS | GOF | √ | - | √ | √ | FUS | [ | |
hC9orf72 | [500] n | GOF | √ | √ | √ | √ | DPR, RNA foci, TDP-43 | [ | |
hC9orf72 | [500] n | - | - | √ | × | √ | DPR, RNA foci | [ | |
hC9orf72 | [500] n | - | - | - | √ | √ | RNA foci | [ | |
基因敲入小鼠模型 Knock-in mouse model | TDP-43 | N390D | GOF | - | - | √ | √ | TDP-43 | [ |
TDP-43 | Q331K | GOF | × | √ | √ | - | × | [ | |
FUS | P517L | GOF | - | - | √ | √ | FUS | [ | |
FUS | Δ14 | GOF | - | - | √ | √ | FUS | [ | |
FUS | ΔNLS | - | - | - | √ | - | FUS | [ | |
C9orf72 | (GR)400或(PR)400 | - | - | - | √ | × | DPR | [ | |
CLCC1 | K298A | LOF | - | - | √ | - | TDP-43, UBI | [ | |
PCDHA9 | L700P | - | √ | - | √ | √ | TDP-43 | [ | |
腺相关病毒过表达小鼠模型 Adeno-associated virus-mediated overexpression mouse model | TDP-43 | WT | - | √ | - | √ | - | - | [ |
TDP-43 | M337V | GOF | √ | - | √ | √ | TDP-43 | [ | |
C9orf72 | [ | GOF | √ | √ | √ | √ | DPR, RNA foci, TDP-43 | [ | |
C9orf72 | [149] n | GOF | √ | √ | √ | √ | DPR, RNA foci, TDP-43 | [ | |
C9orf72 | [100] n | LOF | × | √ | √ | √ | TDP-43 | [ | |
SARM1 | V184G | - | √ | - | - | - | - | [ |
[1] | WANG H, GUAN L P, DENG M. Recent progress of the genetics of amyotrophic lateral sclerosis and challenges of gene therapy[J]. Front Neurosci, 2023, 17:1170996. DOI:10.3389/fnins.2023.1170996 . |
[2] | BROWN R H, AL-CHALABI A. Amyotrophic lateral sclerosis[J]. N Engl J Med, 2017, 377(2):162-172. DOI:10.1056/nejmra 1603471 . |
[3] | MEAD R J, SHAN N, JOSEPH REISER H J, et al. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation[J]. Nat Rev Drug Discov, 2023, 22(3): 185-212. DOI:10.1038/s41573-022-00612-2 . |
[4] | XU L, CHEN L, WANG S F, et al. Incidence and prevalence of amyotrophic lateral sclerosis in urban China: a national population-based study[J]. J Neurol Neurosurg Psychiatry, 2020, 91(5):520-525. DOI:10.1136/jnnp-2019-322317 . |
[5] | FELDMAN E L, GOUTMAN S A, PETRI S, et al. Amyotrophic lateral sclerosis[J]. Lancet, 2022, 400(10360):1363-1380. DOI:10.1016/s0140-6736(22)01272-7 . |
[6] | ZHU L H, LI S H, LI X J, et al. Pathological insights from amyotrophic lateral sclerosis animal models: comparisons, limitations, and challenges[J]. Transl Neurodegener, 2023, 12(1): 46. DOI:10.1186/s40035-023-00377-7 . |
[7] | LI C Y, YANG T M, OU R W, et al. Genome-wide genetic links between amyotrophic lateral sclerosis and autoimmune diseases[J]. BMC Med, 2021, 19(1):27. DOI:10.1186/s12916-021-01903-y . |
[8] | KIM G, GAUTIER O, TASSONI-TSUCHIDA E, et al. ALS genetics: gains, losses, and implications for future therapies[J]. Neuron, 2020, 108(5):822-842. DOI:10.1016/j.neuron. 2020.08.022 . |
[9] | AL-CHALABI A, FANG F, HANBY M F, et al. An estimate of amyotrophic lateral sclerosis heritability using twin data[J]. J Neurol Neurosurg Psychiatry, 2010, 81(12):1324-1326. DOI:10.1136/jnnp.2010.207464 . |
[10] | YOUNGER D S, BROWN R H Jr. Amyotrophic lateral sclerosis.[J]. Handb Clin Neurol, 2023, 196: 203-229. DOI:10.1016/B978-0-323-98817-9.00031-4 . |
[11] | WEI Q Q, CHEN X P, CHEN Y P, et al. Unique characteristics of the genetics epidemiology of amyotrophic lateral sclerosis in China[J]. Sci China Life Sci, 2019, 62(4):517-525. DOI:10.1007/s11427-018-9453-x . |
[12] | ROSEN D R, SIDDIQUE T, PATTERSON D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis[J]. Nature, 1993, 364(6415):59-62. DOI:10.1038/362059a0 . |
[13] | PEGGION C, SCALCON V, MASSIMINO M L, et al. SOD1 in ALS: Taking stock in pathogenic mechanisms and the role of glial and muscle cells[J]. Antioxidants, 2022, 11(4):614. DOI:10.3390/antiox11040614 . |
[14] | LI H F, WU Z Y. Genotype-phenotype correlations of amyotrophic lateral sclerosis[J]. Transl Neurodegener, 2016, 5:3. DOI:10.1186/s40035-016-0050-8 . |
[15] | ZOU Z Y, ZHOU Z R, CHE C H, et al. Genetic epidemiology of amyotrophic lateral sclerosis: a systematic review and meta-analysis[J]. J Neurol Neurosurg Psychiatry, 2017, 88(7):540-549. DOI:10.1136/jnnp-2016-315018 . |
[16] | GURNEY M E, PU H, CHIU A Y, et al. Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase mutation[J]. Science, 1994, 264(5166):1772-1775. DOI:10.1126/science.8209258 . |
[17] | TODD T W, PETRUCELLI L. Modelling amyotrophic lateral sclerosis in rodents[J]. Nat Rev Neurosci, 2022, 23(4): 231-251. DOI:10.1038/s41583-022-00564-x . |
[18] | CIURO M, SANGIORGIO M, LEANZA G, et al. A meta-analysis study of SOD1-mutant mouse models of als to analyse the determinants of disease onset and progression[J]. Int J Mol Sci, 2022, 24(1):216-232. DOI:10.3390/ijms24010216 . |
[19] | ACEVEDO-AROZENA A, KALMAR B, ESSA S, et al. A comprehensive assessment of the SOD1G93A low-copy transgenic mouse, which models human amyotrophic lateral sclerosis[J]. Dis Model Mech, 2011, 4(5):686-700. DOI:10.1242/dmm.007237 . |
[20] | LINO M M, SCHNEIDER C, CARONI P. Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease[J]. J Neurosci, 2002, 22(12):4825-4832. DOI:10.1523/JNEUROSCI.22-12-04825.2002 . |
[21] | SAITOH Y, TAKAHASHI Y. Riluzole for the treatment of amyotrophic lateral sclerosis[J]. Neurodegener Dis Manag, 2020, 10(6):343-355. DOI:10.2217/nmt-2020-0033 . |
[22] | BROOKS B R, BERRY J D, CIEPIELEWSKA M, et al. Intravenous edaravone treatment in ALS and survival: an exploratory, retrospective, administrative claims analysis[J]. EClinicalMedicine, 2022, 52:101590. DOI:10.1016/j.eclinm. 2022.101590 . |
[23] | MCCAMPBELL A, COLE T, WEGENER A J, et al. Antisense oligonucleotides extend survival and reverse decrement in muscle response in ALS models[J]. J Clin Invest, 2018, 128(8):3558-3567. DOI:10.1172/JCI99081 . |
[24] | MACKENZIE I R A, BIGIO E H, INCE P G, et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations[J]. Ann Neurol, 2007, 61(5):427-434. DOI:10.1002/ana.21147 . |
[25] | DE GIORGIO F, MADURO C, FISHER E M C, et al. Transgenic and physiological mouse models give insights into different aspects of amyotrophic lateral sclerosis[J]. Dis Model Mech, 2019, 12(1): dmm037424. DOI:10.1242/dmm.037424 . |
[26] | TSAI K J, YANG C H, FANG Y H, et al. Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U[J]. J Exp Med, 2010, 207(8):1661-1673. DOI:10.1084/jem. 20092164 . |
[27] | WATANABE S, OIWA K, MURATA Y, et al. ALS-linked TDP-43M337V knock-in mice exhibit splicing deregulation without neurodegeneration[J]. Mol Brain, 2020, 13(1):8. DOI:10.1186/s13041-020-0550-4 . |
[28] | LANZNASTER D, VEYRAT-DUREBEX C, VOURC'H P, et al. Metabolomics: a tool to understand the impact of genetic mutations in amyotrophic lateral sclerosis[J]. Genes, 2020, 11(5):537. DOI:10.3390/genes11050537 . |
[29] | LUTZ C. Mouse models of ALS: past, present and future[J]. Brain Res, 2018, 1693(Pt A):1-10. DOI:10.1016/j.brainres. 2018.03.024 . |
[30] | CHAN G, VAN HUMMEL A, VAN DER HOVEN J, et al. Neurodegeneration and motor deficits in the absence of astrogliosis upon transgenic mutant TDP-43 expression in mature mice[J]. Am J Pathol, 2020, 190(8):1713-1722. DOI:10.1016/j.ajpath.2020.04.009 . |
[31] | ARNOLD E S, LING S C, HUELGA S C, et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43[J]. Proc Natl Acad Sci USA, 2013, 110(8): E736-E745. DOI:10.1073/pnas.1222809110 . |
[32] | WILS H, KLEINBERGER G, JANSSENS J, et al. TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration[J]. Proc Natl Acad Sci USA, 2010, 107(8): 3858-3863. DOI:10.1073/pnas.0912417107 . |
[33] | HERDEWYN S, CIRILLO C, VAN DEN BOSCH L, et al. Prevention of intestinal obstruction reveals progressive neurodegeneration in mutant TDP-43 (A315T) mice[J]. Mol Neurodegener, 2014, 9:24. DOI:10.1186/1750-1326-9-24 . |
[34] | SWARUP V, PHANEUF D, BAREIL C, et al. Pathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments[J]. Brain, 2011, 134(Pt 9):2610-2626. DOI:10.1093/brain/awr159 . |
[35] | MEJZINI R, FLYNN L L, PITOUT I L, et al. ALS genetics, mechanisms, and therapeutics: where are we now?[J]. Front Neurosci, 2019, 13:1310. DOI:10.3389/fnins.2019.01310 . |
[36] | CHEN C, DING X F, AKRAM N, et al. Fused in sarcoma: properties, self-assembly and correlation with neurodegenerative diseases[J]. Molecules, 2019, 24(8):1622. DOI:10.3390/molecules24081622 . |
[37] | PELAEZ M C, DESMEULES A, GELON P A, et al. Neuronal dysfunction caused by FUSR521G promotes ALS-associated phenotypes that are attenuated by NF-κB inhibition[J]. Acta Neuropathol Commun, 2023, 11(1): 182. DOI:10.1186/s40478-023-01671-1 . |
[38] | QIU H Y, LEE S, SHANG Y L, et al. ALS-associated mutation FUS-R521C causes DNA damage and RNA splicing defects[J]. J Clin Invest, 2021, 131(7): e149564. DOI:10.1172/JCI149564 . |
[39] | MITCHELL J C, MCGOLDRICK P, VANCE C, et al. Overexpression of human wild-type FUS causes progressive motor neuron degeneration in an age- and dose-dependent fashion[J]. Acta Neuropathol, 2013, 125(2):273-288. DOI:10.1007/s00401-012-1043-z . |
[40] | SHIIHASHI G, ITO D, YAGI T, et al. Mislocated FUS is sufficient for gain-of-toxic-function amyotrophic lateral sclerosis phenotypes in mice[J]. Brain, 2016, 139(Pt 9):2380-2394. DOI:10.1093/brain/aww161 . |
[41] | SHIIHASHI G, ITO D, ARAI I, et al. Dendritic homeostasis disruption in a novel frontotemporal dementia mouse model expressing cytoplasmic fused in sarcoma[J]. EBioMedicine, 2017, 24:102-115. DOI:10.1016/j.ebiom.2017.09.005 . |
[42] | DEBRAY S, RACE V, CRABBÉ V, et al. Frequency of C9orf72 repeat expansions in amyotrophic lateral sclerosis: a Belgian cohort study[J]. Neurobiol Aging, 2013, 34(12):2890.e7-2892890.e12. DOI:10.1016/j.neurobiolaging.2013.06.009 . |
[43] | PARAMESWARAN J, ZHANG N, BRAEMS E, et al. Antisense, but not sense, repeat expanded RNAs activate PKR/eIF2α-dependent ISR in C9ORF72 FTD/ALS[J]. elife, 2023, 12:e85902. DOI:10.7554/eLife.85902 . |
[44] | BABIĆ LEKO M, ŽUPUNSKI V, KIRINCICH J, et al. Molecular mechanisms of neurodegeneration related to C9orf72 hexanucleotide repeat expansion[J]. Behav Neurol, 2019, 2019:2909168. DOI:10.1155/2019/2909168 . |
[45] | NGUYEN H P, VAN BROECKHOVEN C, VAN DER ZEE J. ALS genes in the genomic era and their implications for FTD[J]. Trends Genet, 2018, 34(6):404-423. DOI:10.1016/j.tig. 2018. 03.001 . |
[46] | BECKERS J, THARKESHWAR A K, VAN DAMME P. C9orf72 ALS-FTD: recent evidence for dysregulation of the autophagy-lysosome pathway at multiple levels[J]. Autophagy, 2021, 17(11):3306-3322. DOI:10.1080/15548627. 2021.1872189 . |
[47] | LIU Y J, PATTAMATTA A, ZU T, et al. C9orf72 BAC mouse model with motor deficits and neurodegenerative features of ALS/FTD[J]. Neuron, 2016, 90(3):521-534. DOI:10.1016/j.neuron.2016.04.005 . |
[48] | NGUYEN L, MONTRASIO F, PATTAMATTA A, et al. Antibody therapy targeting RAN proteins rescues C9 ALS/FTD phenotypes in C9orf72 mouse model[J]. Neuron, 2020, 105(4):645-662.e11. DOI:10.1016/j.neuron.2019.11.007 . |
[49] | MORDES D A, MORRISON B M, AMENT X H, et al. Absence of survival and motor deficits in 500 repeat C9ORF72 BAC mice[J]. Neuron, 2020, 108(4):775-783.e4. DOI:10.1016/j.neuron. 2020.08.009 . |
[50] | NGUYEN L, LABOISSONNIERE L A, GUO S, et al. Survival and motor phenotypes in FVB C9-500 ALS/FTD BAC transgenic mice reproduced by multiple labs[J]. Neuron, 2020, 108(4):784-796.e3. DOI:10.1016/j.neuron.2020.09.009 . |
[51] | RICH K A, PINO M G, YALVAC M E, et al. Impaired motor unit recovery and maintenance in a knock-in mouse model of ALS-associated Kif5a variant[J]. Neurobiol Dis, 2023, 182:106148. DOI:10.1016/j.nbd.2023.106148 . |
[52] | GUO L, MAO Q L, HE J, et al. Disruption of ER ion homeostasis maintained by an ER anion channel CLCC1 contributes to ALS-like pathologies[J]. Cell Res, 2023, 33(7): 497-515. DOI:10.1038/s41422-023-00798-z . |
[53] | ZHONG J, WANG C D, ZHANG D, et al. PCDHA9 as a candidate gene for amyotrophic lateral sclerosis[J]. Nat Commun, 2024, 15(1):2189. DOI:10.1038/s41467-024-46333-5 . |
[54] | LÉPINE S, NAULEAU-JAVAUDIN A, DENEAULT E, et al. Homozygous ALS-linked mutations in TARDBP/TDP-43 lead to hypoactivity and synaptic abnormalities in human iPSC-derived motor neurons[J]. iScience, 2024, 27(3):109166. DOI:10.1016/j.isci.2024.109166 . |
[55] | WHITE M A, KIM E, DUFFY A, et al. TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD[J]. Nat Neurosci, 2018, 21(4):552-563. DOI:10.1038/s41593-018-0113-5 . |
[56] | EBSTEIN S Y, YAGUDAYEVA I, SHNEIDER N A. Mutant TDP-43 causes early-stage dose-dependent motor neuron degeneration in a TARDBP knockin mouse model of ALS[J]. Cell Rep, 2019, 26(2):364-373.e4. DOI:10.1016/j.celrep. 2018.12.045 . |
[57] | HUANG S L, WU L S, LEE M, et al. A robust TDP-43 knock-in mouse model of ALS[J]. Acta Neuropathol Commun, 2020, 8(1):3. DOI:10.1186/s40478-020-0881-5 . |
[58] | KOROBEYNIKOV V A, LYASHCHENKO A K, BLANCO-REDONDO B, et al. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis[J]. Nat Med, 2022, 28(1):104-116. DOI:10.1038/s41591-021-01615-z . |
[59] | DEVOY A, KALMAR B, STEWART M, et al. Humanized mutant FUS drives progressive motor neuron degeneration without aggregation in 'FUSDelta14' knockin mice[J]. Brain, 2017, 140(11):2797-2805. DOI:10.1093/brain/awx248 . |
[60] | DENG Z Q, LIM J, WANG Q, et al. ALS-FTLD-linked mutations of SQSTM1/p62 disrupt selective autophagy and NFE2L2/NRF2 anti-oxidative stress pathway[J]. Autophagy, 2020, 16(5):917-931. DOI:10.1080/15548627.2019.1644076 . |
[61] | BURBERRY A, WELLS M F, LIMONE F, et al. C9orf72 suppresses systemic and neural inflammation induced by gut bacteria[J]. Nature, 2020, 582(7810):89-94. DOI:10.1038/s41586-020-2288-7 . |
[62] | ZHU Q, JIANG J, GENDRON T F, et al. Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72[J]. Nat Neurosci, 2020, 23(5):615-624. DOI:10.1038/s41593-020-0619-5 . |
[63] | POLLOCK N, MACPHERSON P C, STAUNTON C A, et al. Deletion of Sod1 in motor neurons exacerbates age-related changes in axons and neuromuscular junctions in mice[J]. eNeuro, 2023, 10(3):ENEURO.0086-22.2023. DOI:10.1523/ENEURO.0086-22.2023 . |
[64] | SHEFNER J M, REAUME A G, FLOOD D G, et al. Mice lacking cytosolic copper/zinc superoxide dismutase display a distinctive motor axonopathy[J]. Neurology, 1999, 53(6):1239-1246. DOI:10.1212/wnl.53.6.1239 . |
[65] | YOSHIHARA D, FUJIWARA N, KITANAKA N, et al. The absence of the SOD1 gene causes abnormal monoaminergic neurotransmission and motivational impairment-like behavior in mice[J]. Free Radic Res, 2016, 50(11):1245-1256. DOI:10.1080/10715762.2016.1234048 . |
[66] | KRAEMER B C, SCHUCK T, WHEELER J M, et al. Loss of murine TDP-43 disrupts motor function and plays an essential role in embryogenesis[J]. Acta Neuropathol, 2010, 119(4):409-419. DOI:10.1007/s00401-010-0659-0 . |
[67] | KINO Y, WASHIZU C, KUROSAWA M, et al. FUS/TLS deficiency causes behavioral and pathological abnormalities distinct from amyotrophic lateral sclerosis[J]. Acta Neuropathol Commun, 2015, 3:24. DOI:10.1186/s40478-015-0202-6 . |
[68] | KURASHIGE T, KURAMOCHI M, OHSAWA R, et al. Optineurin defects cause TDP43-pathology with autophagic vacuolar formation[J]. Neurobiol Dis, 2021, 148:105215. DOI:10.1016/j.nbd.2020.105215 . |
[69] | GURFINKEL Y, POLAIN N, SONAR K, et al. Functional and structural consequences of TBK1 missense variants in frontotemporal lobar degeneration and amyotrophic lateral sclerosis[J]. Neurobiol Dis, 2022, 174:105859. DOI:10.1016/j.nbd.2022.105859 . |
[70] | RAMESH BABU J, LAMAR SEIBENHENER M, PENG J M, et al. Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau and neurodegeneration[J]. J Neurochem, 2008, 106(1):107-120. DOI:10.1111/j.1471-4159. 2008.05340.x . |
[71] | CHEW J, COOK C, GENDRON T F, et al. Aberrant deposition of stress granule-resident proteins linked to C9orf72-associated TDP-43 proteinopathy[J]. Mol Neurodegener, 2019, 14(1):9. DOI:10.1186/s13024-019-0310-z . |
[72] | GENDRON T F, BIENIEK K F, ZHANG Y J, et al. Antisense transcripts of the expanded C9ORF72 hexanucleotide repeat form nuclear RNA foci and undergo repeat-associated non-ATG translation in c9FTD/ALS[J]. Acta Neuropathol, 2013, 126(6): 829-844. DOI:10.1007/s00401-013-1192-8 . |
[73] | COOK C N, WU Y W, ODEH H M, et al. C9orf72 poly(GR) aggregation induces TDP-43 proteinopathy[J]. Sci Transl Med, 2020, 12(559): eabb3774. DOI:10.1126/scitranslmed.abb3774 . |
[74] | ZHANG Y J, GENDRON T F, GRIMA J C, et al. C9ORF72 poly(GA) aggregates sequester and impair HR23 and nucleocytoplasmic transport proteins[J]. Nat Neurosci, 2016, 19(5):668-677. DOI:10.1038/nn.4272 . |
[75] | YAN S, WANG C E, WEI W J, et al. TDP-43 causes differential pathology in neuronal versus glial cells in the mouse brain[J]. Hum Mol Genet, 2014, 23(10):2678-2693. DOI:10.1093/hmg/DDT662 . |
[76] | TSUBOGUCHI S, NAKAMURA Y, ISHIHARA T, et al. TDP-43 differentially propagates to induce antero- and retrograde degeneration in the corticospinal circuits in mouse focal ALS models[J]. Acta Neuropathol, 2023, 146(4): 611-629. DOI:10.1007/s00401-023-02615-8 . |
[77] | JACKSON K L, DAYTON R D, DEVERMAN B E, et al. Better targeting, better efficiency for wide-scale neuronal transduction with the synapsin promoter and AAV-PHP.B[J]. Front Mol Neurosci, 2016, 9:116. DOI:10.3389/fnmol. 2016. 00116 . |
[78] | JOSEPH BLOOM A, MAO X R, STRICKLAND A, et al. Constitutively active SARM1 variants that induce neuropathy are enriched in ALS patients[J]. Mol Neurodegener, 2022, 17(1): 1-15. DOI:10.1186/s13024-021-00511-x . |
[79] | VAN HUMMEL A, SABALE M, PRZYBYLA M, et al. TDP-43 pathology and functional deficits in wild-type and ALS/FTD mutant cyclin F mouse models[J]. Neuropathol Appl Neurobiol, 2023, 49(2): e12902. DOI:10.1111/nan.12902 . |
[80] | YIN P, BAI D Z, DENG F Y, et al. SQSTM1-mediated clearance of cytoplasmic mutant TARDBP/TDP-43 in the monkey brain[J]. Autophagy, 2022, 18(8):1955-1968. DOI:10.1080/15548627.2021.2013653 . |
[81] | GRAFFMO K S, FORSBERG K, BERGH J, et al. Expression of wild-type human superoxide dismutase-1 in mice causes amyotrophic lateral sclerosis[J]. Hum Mol Genet, 2013, 22(1):51-60. DOI:10.1093/hmg/dds399 . |
[82] | ANDREAS JONSSON P, GRAFFMO K S, BRÄNNSTRÖM T, et al. Motor neuron disease in mice expressing the wild type-like D90A mutant superoxide dismutase-1[J]. J Neuropathol Exp Neurol, 2006, 65(12):1126-1136. DOI:10.1097/01.jnen.0000248545.36046.3c . |
[83] | QUARTA E, BRAVI R, SCAMBI I, et al. Increased anxiety-like behavior and selective learning impairments are concomitant to loss of hippocampal interneurons in the presymptomatic SOD1(G93A) ALS mouse model[J]. J Comp Neurol, 2015, 523(11):1622-1638. DOI:10.1002/cne.23759 . |
[84] | LÓPEZ-ERAUSKIN J, TADOKORO T, BAUGHN M W, et al. ALS/FTD-linked mutation in FUS suppresses intra-axonal protein synthesis and drives disease without nuclear loss-of-function of FUS[J]. Neuron, 2020, 106(2):354. DOI:10.1016/j.neuron. 2020.04.006 . |
[85] | PATTAMATTA A, NGUYEN L, OLAFSON H R, et al. Repeat length increases disease penetrance and severity in C9orf72 ALS/FTD BAC transgenic mice[J]. Hum Mol Genet, 2021, 29(24):3900-3918. DOI:10.1093/hmg/ddaa279 . |
[86] | KOROBEYNIKOV V A, LYASHCHENKO A K, BLANCO-REDONDO B, et al. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis[J]. Nat Med, 2022, 28(1):104-116. DOI:10.1038/s41591-021-01615-z . |
[87] | PICCHIARELLI G, DEMESTRE M, ZUKO A, et al. FUS-mediated regulation of acetylcholine receptor transcription at neuromuscular junctions is compromised in amyotrophic lateral sclerosis[J]. Nat Neurosci, 2019, 22(11):1793-1805. DOI:10.1038/s41593-019-0498-9 . |
[88] | MILIOTO C, CARCOLÉ M, GIBLIN A, et al. PolyGR and polyPR knock-in mice reveal a conserved neuroprotective extracellular matrix signature in C9orf72 ALS/FTD neurons[J]. Nat Neurosci, 2024, 27(4):643-655. DOI:10.1038/s41593-024-01589-4 . |
[89] | ZHANG Y J, GENDRON T F, EBBERT M T W, et al. Poly(GR) impairs protein translation and stress granule dynamics in C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis[J]. Nat Med, 2018, 24(8):1136-1142. DOI:10.1038/s41591-018-0071-1 . |
[1] | WANG Jian-ming, GENG Teng, CHEN Hang, NI Jun-da, WANG Wen-hua, CHEN Bing, XUE Zheng-feng. Microphthalmia Mutagenesis Mouse Induced by N-ethyl-N-nitrosourea and Its Genetic Tests [J]. Laboratory Animal and Comparative Medicine, 2014, 34(6): 473-475. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||