Laboratory Animal and Comparative Medicine ›› 2021, Vol. 41 ›› Issue (4): 271-283.DOI: 10.12300/j.issn.1674-5817.2021.085
Special Issue: 专家论坛
• 40th Anniversary Expert Forum • Next Articles
HU Zhibin1,2, HUANG Ying1, DING Yuqiang1,2
Received:
2021-04-21
Revised:
2021-05-18
Online:
2021-08-25
Published:
2021-08-25
Contact:
HUANG Ying, E-mail: ying_huang@fudan.edu.cn;DING Yuqiang, E-mail: dingyuqiang@fudan.edu.cn
CLC Number:
HU Zhibin,HUANG Ying,DING Yuqiang. Construction and Evaluation of Animal Models for Cerebral Ischemia[J]. Laboratory Animal and Comparative Medicine, 2021, 41(4): 271-283. DOI: 10.12300/j.issn.1674-5817.2021.085.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2021.085
[1] KAHL A, BLANCO I, JACKMAN K, et al.Cerebral ischemia induces the aggregation of proteins linked to neurodegenerative diseases[J]. Sci Rep, 2018, 8:2701. DOI:10.1038/s41598-018-21063-z. [2] NAGATA K, YAMAZAKI T, TAKANO D, et al.Cerebral circulation in aging[J]. Ageing Res Rev, 2016, 30:49-60. DOI:10.1016/j.arr.2016.06.001. [3] HOSSMANN K A.Pathophysiology and therapy of experimental stroke[J]. Cell Mol Neurobiol, 2006, 26(7-8):1057-1083. DOI:10.1007/s10571-006-9008-1. [4] FERRER I, VIDAL N.Neuropathology of cerebro-vascular diseases[J]. Handb Clin Neurol, 2017, 145:79-114. DOI:10.1016/b978-0-12-802395-2.00007-9. [5] DURUKAN A, TATLISUMAK T.Acute ischemic stroke: verview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia[J]. Pharmacol Biochem Behav, 2007, 87(1):179-197. DOI:10.1016/j.pbb.2007.04.015. [6] WANG L D, YIN L, HUA Y, et al.Fixed-dose combination treatment after stroke for secondary prevention in China: national community-based study[J]. Stroke, 2015, 46(5):1295-1300. DOI:10.1161/STROKEAHA.114.007384. [7] 孙海欣, 王文志. 中国60万人群脑血管病流行病学抽样调查报告[J]. 中国现代神经疾病杂志, 2018, 18(2):83-88. DOI:10.3969/j.issn.1672-6731.2018.02.002. [8] MCCABE C, ARROJA M M, REID E, et al.Animal models of ischaemic stroke and characterisation of the ischaemic penumbra[J]. Neuropharmacology, 2018, 134(Pt B):169-177. DOI:10.1016/j.neuropharm.2017.09.022. [9] 甘勇, 杨婷婷, 刘建新, 等. 国内外脑卒中流行趋势及影响因素研究进展[J]. 中国预防医学杂志, 2019, 20(2):139-144. DOI:10.16506/j.1009-6639.2019.02.013. [10] 王琮, 陈宇, 张阿龙, 等. 局灶性脑缺血动物模型制作方法研究进展[J]. 齐齐哈尔医学院学报, 2021, 42(6):506-509. [11] ZHOU Y X, WANG X, TANG D, et al.IL-2mAb reduces demyelination after focal cerebral ischemia by suppressing CD8+ T cells[J]. CNS Neurosci Ther, 2019, 25(4):532-543. DOI:10.1111/cns.13084. [12] LV Z M, ZHAO R J, ZHI X S, et al.Expression of DCX and transcription factor profiling in photothrombosis-induced focal ischemia in mice[J]. Front Cell Neurosci, 2018, 12:455. DOI:10.3389/fncel.2018.00455. [13] KARATAS H, ERDENER S E, GURSOY-OZDEMIR Y, et al.Thrombotic distal middle cerebral artery occlusion produced by topical FeCl3 application: novel model suitable for intravital microscopy and thrombolysis studies[J]. J Cereb Blood Flow Metab, 2011, 31(6):1452-1460. DOI:10.1038/jcbfm.2011.8. [14] YANG G, KITAGAWA K, MATSUSHITA K, et al.C57BL/6 strain is most susceptible to cerebral ischemia following bilateral common carotid occlusion among seven mouse strains: elective neuronal death in the murine transient forebrain ischemia[J]. Brain Res, 1997, 752(1-2):209-218. DOI:10.1016/s0006-8993(96)01453-9. [15] ABDEL-RAHMAN R F, ALQASOUMI S I, OGALY H A, et al. Propolis ameliorates cerebral injury in focal cerebral ischemia/reperfusion (I/R) rat model via upregulation of TGF-β1[J]. Saudi Pharm J, 2020, 28(1):116-126. DOI:10.1016/j.jsps.2019.11.013. [16] KERBRAT A, GROS C, BADJI A, et al.Multiple sclerosis lesions in motor tracts from brain to cervical cord: patial distribution and correlation with disability[J]. Brain, 2020, 143(7):2089-2105. DOI:10.1093/brain/awaa162. [17] STRÖM J O, INGBERG E, THEODORSSON A, et al. Method parameters' impact on mortality and variability in rat stroke experiments: meta-analysis[J]. BMC Neurosci, 2013, 14:41. DOI:10.1186/1471-2202-14-41. [18] KIRINO T.Delayed neuronal death in the gerbil [19] WASHIDA K, HATTORI Y, IHARA M.Animal models of chronic cerebral hypoperfusion: rom mouse to primate[J]. Int J Mol Sci, 2019, 20(24): E6176. DOI:10.3390/ijms20246176. [20] IKEDA S, HARADA K, OHWATASHI A, et al.A new non-human primate model of photochemically induced cerebral infarction[J]. PLoS One, 2013, 8(3): e60037. DOI:10.1371/journal.pone.0060037. [21] MOISENOVICH M M, SILACHEV D N, MOYSENOVICH A M, et al.Effects of recombinant spidroin rS1/9 on brain neural progenitors after photothrombosis-induced ischemia[J]. Front Cell Dev Biol, 2020, 8:823. DOI:10.3389/fcell.2020.00823. [22] DEWAR D, YAM P, MCCULLOCH J.Drug development for stroke: importance of protecting cerebral white matter[J]. Eur J Pharmacol, 1999, 375(1-3):41-50. DOI:10.1016/s0014-2999(99)00280-0. [23] MADIGAN J B, WILCOCK D M, HAINSWORTH A H.Vascular contributions to cognitive impairment and dementia: topical review of animal models[J]. Stroke, 2016, 47(7):1953-1959. DOI:10.1161/STROKEAHA.116.012066. [24] CHEN A Q, AKINYEMI R O, HASE Y, et al.Frontal white matter hyperintensities, clasmatodendrosis and gliovascular abnormalities in ageing and post-stroke dementia[J]. Brain, 2016, 139(Pt 1):242-258. DOI:10.1093/brain/awv328. [25] STEELE P R, CAVARSAN C F, DOWALIBY L, et al.Altered motoneuron properties contribute to motor deficits in a rabbit hypoxia-ischemia model of cerebral palsy[J]. Front Cell Neurosci, 2020, 14:69. DOI:10.3389/fncel.2020.00069. [26] ZHANG R, BERTELSEN L B, FLØ C, et al.Establishment and characterization of porcine focal cerebral ischemic model induced by endothelin-1[J]. Neurosci Lett, 2016, 635:1-7. DOI:10.1016/j.neulet.2016.10.036. [27] EKLÖF B, SIESJÖ B K. The effect of bilateral carotid artery ligation upon the blood flow and the energy state of the rat brain[J]. Acta Physiol Scand, 1972, 86(2):155-165. DOI:10.1111/j.1748-1716.1972.tb05322.x. [28] SANDERSON T H, WIDER J M.2-vessel occlusion/hypotension: rat model of global brain ischemia[J]. J Vis Exp, 2013(76): e50173. DOI:10.3791/50173. [29] HUANG T H, LIN Y W, HUANG C P, et al.Short-term auricular electrical stimulation rapidly elevated cortical blood flow and promoted the expression of nicotinic acetylcholine receptor α4 in the 2 vessel occlusion rats model[J]. J Biomed Sci, 2019, 26(1):36. DOI:10.1186/s12929-019-0526-9. [30] PULSINELLI W A, BRIERLEY J B.A new model of bilateral hemispheric ischemia in the unanesthetized rat[J]. Stroke, 1979, 10(3):267-272. DOI:10.1161/01.str.10.3.267. [31] SUGIO K, HORIGOME N, SAKAGUCHI T, et al.A model of bilateral hemispheric ischemia: modified four-vessel occlusion in rats[J]. Stroke, 1988, 19(7):922. DOI:10.1161/str.19.7.922a. [32] YOSHIMURA S, UCHIDA K, SAKAI N, et al.Safety of early administration of apixaban on clinical outcomes in patients with acute large vessel occlusion[J]. Transl Stroke Res, 2021, 12(2):266-274. DOI:10.1007/s12975-020-00839-4. [33] 李兵, 章翔, 蒋晓帆, 等. 改良四血管阻塞法建立大鼠全脑缺血模型[J]. 中华神经外科疾病研究杂志, 2005, 4(2):110-113. DOI:10.3969/j.issn.1671-2897.2005. 02.005. [34] ZAGHI G G, GODINHO J, FERREIRA E D, et al.Robust and enduring atorvastatin-mediated memory recovery following the 4-vessel occlusion/internal carotid artery model of chronic cerebral hypoperfusion in middle-aged rats[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2016, 65:179-187. DOI:10.1016/j.pnpbp.2015.10.004. [35] KAMEYAMA M, SUZUKI J, SHIRANE R, et al.A new model of bilateral hemispheric ischemia in the rat: three vessel occlusion model[J]. Stroke, 1985, 16(3):489-493. DOI:10.1161/01.str.16.3.489. [36] PANAHIAN N, YOSHIDA T, HUANG P L, et al.Attenuated hippocampal damage after global cerebral ischemia in mice mutant in neuronal nitric oxide synthase[J]. Neuroscience, 1996, 72(2):343-354. DOI:10.1016/0306-4522(95)00563-3. [37] THAL S C, THAL S E, PLESNILA N.Characterization of a 3-vessel occlusion model for the induction of complete global cerebral ischemia in mice[J]. J Neurosci Methods, 2010, 192(2):219-227. DOI:10.1016/j.jneumeth.2010.07.032. [38] LÜ P, JIAO Q B, SHIMURA D, et al.Distinct vascular remodeling pattern of adult rats with carotid-jugular shunt[J]. Ann Vasc Surg, 2018, 49:168-178. DOI:10.1016/j.avsg.2017.12.011. [39] TAMURA A, GRAHAM D I, MCCULLOCH J, et al.Focal cerebral ischaemia in the rat: 1. escription of technique and early neuropathological consequences following middle cerebral artery occlusion[J]. J Cereb Blood Flow Metab, 1981, 1(1):53-60. DOI:10.1038/jcbfm.1981.6. [40] BEDERSON J B, PITTS L H, TSUJI M, et al.Rat middle cerebral artery occlusion: valuation of the model and development of a neurologic examination[J]. Stroke, 1986, 17(3):472-476. DOI:10.1161/01.str. 17.3.472. [41] EJAZ S, WILLIAMSON D J, AHMED T, et al.Characterizing infarction and selective neuronal loss following temporary focal cerebral ischemia in the rat: multi-modality imaging study[J]. Neurobiol Dis, 2013, 51:120-132. DOI:10.1016/j.nbd.2012.11.002. [42] SHMONIN A, MELNIKOVA E, GALAGUDZA M, et al.Characteristics of cerebral ischemia in major rat stroke models of middle cerebral artery ligation through craniectomy[J]. Int J Stroke, 2014, 9(6):793-801. DOI:10.1111/j.1747-4949.2012.00947.x. [43] KOIZUMI J I, YOSHIDA Y, NAKAZAWA T, et al.Experimental studies of ischemic brain edema. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area[J]. Nosotchu, 1986, 8(1):1-8. [44] LONGA E Z, WEINSTEIN P R, CARLSON S, et al.Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1):84-91. DOI:10.1161/01.str.20.1.84. [45] CSIBA L, BERECZKI D, SHIMA T, et al.A modified model of reversible middle cerebral artery embolization in rats without craniectomy[J]. Acta Neurochir, 1992, 114(1-2):51-58. DOI:10.1007/BF01401114. [46] ZUO X L, WU P, JI A M.Nylon filament coated with paraffin for intraluminal permanent middle cerebral artery occlusion in rats[J]. Neurosci Lett, 2012, 519(1):42-46. DOI:10.1016/j.neulet.2012.05.017. [47] 康瑜, 杨小芳. 纳米脂质体槲皮素对脑缺血再灌注损伤的神经保护作用及机制[J]. 实验动物与比较医学, 2020, 40(2):116-122. DOI:10.3969/j.issn.1674-5817.2020.02.005. [48] SVOBODA J, LITVINEC A, KALA D, et al.Strain differences in intraluminal thread model of middle cerebral artery occlusion in rats[J]. Physiol Res, 2019, 68(1):37-48. DOI:10.33549/physiolres.933958. [49] KUDO M, AOYAMA A, ICHIMORI S, et al.An animal model of cerebral infarction. Homologous blood clot emboli in rats[J]. Stroke, 1982, 13(4):505-508. DOI:10.1161/01.str.13.4.505. [50] DINAPOLI V A, ROSEN C L, NAGAMINE T, et al.Selective MCA occlusion: precise embolic stroke model[J]. J Neurosci Methods, 2006, 154(1-2):233-238. DOI:10.1016/j.jneumeth.2005.12.026. [51] ORSET C, MACREZ R, YOUNG A R, et al.Mouse model of [52] CHEN Y X, ZHU W B, ZHANG W R, et al.A novel mouse model of thromboembolic stroke[J]. J Neurosci Methods, 2015, 256:203-211. DOI:10.1016/j.jneumeth. 2015.09.013. [53] ISHRAT T, FOUDA A Y, PILLAI B, et al. Dose-response, therapeutic time-window and tPA-combina-torial efficacy of compound 21: randomized, blinded preclinical trial in a rat model of thromboembolic stroke[J]. J Cereb Blood Flow Metab, 2019, 39(8)1635-1647. DOI:10.1177/0271678X18764773. [54] VANERIO N, STIJNEN M, DE MOL B A J M, et al. Biomedical applications of photo- and sono-activated rose Bengal: a review[J]. Photobiomodul Photomed Laser Surg, 2019, 37(7):383-394. DOI:10.1089/photob.2018.4604. [55] WATSON B D, DIETRICH W D, BUSTO R, et al.Induction of reproducible brain infarction by photochemically initiated thrombosis[J]. Ann Neurol, 1985, 17(5):497-504. DOI:10.1002/ana.410170513. [56] LI H, ROY CHOUDHURY G, ZHANG N, et al.Photothrombosis-induced focal ischemia as a model of spinal cord injury in mice[J]. J Vis Exp, 2015(101): e53161. DOI:10.3791/53161. [57] XUE N Y, GE D Y, DONG R J, et al.Effect of electroacupuncture on glial fibrillary acidic protein and nerve growth factor in the [58] YU C L, ZHOU H, CHAI A P, et al.Whole-scale neurobehavioral assessments of photothrombotic ischemia in freely moving mice[J]. J Neurosci Methods, 2015, 239:100-107. DOI:10.1016/j.jneumeth. 2014.10.004. [59] OWENS A P 3rd, LU Y, WHINNA H C, et al. Towards a standardization of the murine ferric chloride-induced carotid arterial thrombosis model[J]. J Thromb Haemost, 2011, 9(9):1862-1863. DOI:10.1111/j.1538-7836.2011.04287.x. [60] SYEARA N, ALAMRI F F, JAYARAMAN S, et al.Motor deficit in the mouse ferric chloride-induced distal middle cerebral artery occlusion model of stroke[J]. Behav Brain Res, 2020, 380:112418. DOI:10.1016/j.bbr.2019.112418. [61] LI W, NIEMAN M, SEN GUPTA A.Ferric chloride-induced murine thrombosis models[J]. J Vis Exp, 2016(115): e54479. DOI:10.3791/54479. [62] BARTON M, YANAGISAWA M.Endothelin: 30 years from discovery to therapy[J]. Hypertension, 2019, 74(6):1232-1265. DOI:10.1161/HYPERTENSIONAHA. 119.12105. [63] MACRAE I M, ROBINSON M J, GRAHAM D I, et al.Endothelin-1-induced reductions in cerebral blood flow: dose dependency, time course, and neuro-pathological consequences[J]. J Cereb Blood Flow Metab, 1993, 13(2):276-284. DOI:10.1038/jcbfm. 1993.34. [64] SHARKEY J, RITCHIE I M, KELLY P A.Perivascular microapplication of endothelin-1: new model of focal cerebral ischaemia in the rat[J]. J Cereb Blood Flow Metab, 1993, 13(5):865-871. DOI:10.1038/jcbfm. 1993.108. [65] WANG N Y, LI J N, LIU W L, et al. Ferulic acid ameliorates Alzheimer's disease-like pathology and repairs cognitive decline by preventing capillary hypofunction in APP/PS1 mice[J]. Neurotherapeutics, 2021-03-30 [2021-07-18]. https://pubmed.ncbi.nlm.nih.gov/33786807/ DOI:10.1007/s13311-021-01024-7. [66] CUI L L, GOLUBCZYK D, JOLKKONEN J.Top 3 behavioral tests in cell therapy studies after stroke: difficult to stop a moving train[J]. Stroke, 2017, 48(11):3165-3167. DOI:10.1161/STROKEAHA.117.018950. [67] SCHALLERT T, UPCHURCH M, LOBAUGH N, et al.Tactile extinction: istinguishing between sensorimotor and motor asymmetries in rats with unilateral nigrostriatal damage[J]. Pharmacol Biochem Behav, 1982, 16(3):455-462. DOI:10.1016/0091-3057(82)90452-x. [68] CHEN J L, ZHANG C L, JIANG H, et al.Atorvastatin induction of VEGF and BDNF promotes brain plasticity after stroke in mice[J]. J Cereb Blood Flow Metab, 2005, 25(2):281-290. DOI:10.1038/sj.jcbfm.9600034. [69] KARHUNEN H, VIRTANEN T, SCHALLERT T, et al.Forelimb use after focal cerebral ischemia in rats treated with an alpha 2-adrenoceptor antagonist[J]. Pharmacol Biochem Behav, 2003, 74(3):663-669. DOI:10.1016/s0091-3057(02)01053-5. [70] ROGERS D C, CAMPBELL C A, STRETTON J L, et al.Correlation between motor impairment and infarct volume after permanent and transient middle cerebral artery occlusion in the rat[J]. Stroke, 1997, 28(10):2060-2065, 2066. DOI:10.1161/01.str.28.10.2060. [71] BENEDEK A, MÓRICZ K, JURÁNYI Z, et al. Use of TTC staining for the evaluation of tissue injury in the early phases of reperfusion after focal cerebral ischemia in rats[J]. Brain Res, 2006, 1116(1):159-165. DOI:10.1016/j.brainres.2006.07.123. [72] YU C L, LI J N, GAN P, et al.Developing of focal ischemia in the ENEURO.0398-ENEURO.0320.2021. DOI:10.1523/ENEURO.0398-20.2021. [73] XU S B, LU J N, SHAO A W, et al.Glial cells: role of the immune response in ischemic stroke[J]. Front Immunol, 2020, 11:294. DOI:10.3389/fimmu. 2020.00294. [74] VAN BEEK J, CHAN P, BERNAUDIN M, et al.Glial responses, clusterin, and complement in permanent focal cerebral ischemia in the mouse[J]. Glia, 2000, 31(1):39-50. DOI:10.1002/(sici)1098-1136(200007)31:1<39: aid-glia40>3.0.co;2-1. [75] LU J F, BRADLEY R A, ZHANG S C.Turning reactive [76] NAKASE T, SÖHL G, THEIS M, et al. Increased apoptosis and inflammation after focal brain ischemia in mice lacking connexin43 in astrocytes[J]. Am J Pathol, 2004, 164(6):2067-2075. DOI:10.1016/s0002-9440(10)63765-0. [77] MORIZAWA Y M, HIRAYAMA Y, OHNO N, et al.Reactive astrocytes function as phagocytes after brain ischemia via ABCA1-mediated pathway[J]. Nat Commun, 2017, 8(1):28. DOI:10.1038/s41467-017-00037-1. [78] RUPALLA K, ALLEGRINI P R, SAUER D, et al.Time course of microglia activation and apoptosis in various brain regions after permanent focal cerebral ischemia in mice[J]. Acta Neuropathol, 1998, 96(2):172-178. DOI:10.1007/s004010050878. [79] VILLA GONZÁLEZ M, VALLÉS-SAIZ L, HERNÁNDEZ I H, et al. Focal cerebral ischemia induces changes in oligodendrocytic tau isoforms in the damaged area[J]. Glia, 2020, 68(12):2471-2485. DOI:10.1002/glia.23865. [80] KASE Y, SHIMAZAKI T, OKANO H.Current understanding of adult neurogenesis in the mammalian brain: how does adult neurogenesis decrease with age?[J]. Inflamm Regen, 2020, 40:10. DOI:10.1186/s41232-020-00122-x. [81] MARQUES B L, CARVALHO G A, FREITAS E M M, et al. The role of neurogenesis in neurorepair after ischemic stroke[J]. Semin Cell Dev Biol, 2019, 95:98-110. DOI:10.1016/j.semcdb.2018.12.003. [82] ARVIDSSON A, COLLIN T, KIRIK D, et al.Neuronal replacement from endogenous precursors in the adult brain after stroke[J]. Nat Med, 2002, 8(9):963-970. DOI:10.1038/nm747. [83] MACRAE I M.Preclinical stroke research: dvantages and disadvantages of the most common rodent models of focal ischaemia[J]. Br J Pharmacol, 2011, 164(4):1062-1078. DOI:10.1111/j.1476-5381.2011.01398.x. |
[1] | LIU Yayi, JIA Yunfeng, ZUO Yiming, ZHANG Junping, LÜ Shichao. Progress and Evaluation of Animal Model of Heart Qi-Yin Deficiency Syndrome [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 411-421. |
[2] | ZHAO Xin, WANG Chenxi, SHI Wenqing, LOU Yuefen. Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 422-431. |
[3] | PAN Yicong, JIANG Wenhong, HU Ming, QIN Xiao. Optimization of Surgical Procedure and Efficacy Evaluation of Aortic Calcification Model in Rats with Chronic Kidney Disease [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 279-289. |
[4] | CHEN Yuhan, CHEN Jinling, LI Xin, OU Yanhua, WANG Si, CHEN Jingyi, WANG Xingyi, YUAN Jiali, DUAN Yuanyuan, YANG Zhongshan, NIU Haitao. Analysis of Animal Models of Myasthenia Gravis Based on Its Clinical Characteristics in Chinese and Western Medicine [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 176-186. |
[5] | LIAN Hui, JIANG Yanling, LIU Jia, ZHANG Yuli, XIE Wei, XUE Xiaoou, LI Jian. Construction and Evaluation of a Rat Model of Abnormal Uterine Bleeding [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 130-146. |
[6] | LUO Shixiong, ZHANG Sai, CHEN Hui. Research Progress in Establishment and Evaluation of Common Asthma Animal Models [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 167-175. |
[7] | WANG Biying, LU Jiashuo, ZAN Guiying, CHEN Ruosong, CHAI Jingrui, LIU Jinggen, WANG Yujun. Establishment Methods and Application Progress of Rodent Models for Drug Addiction [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 158-166. |
[8] | FEI Bin, GUO Wenke, GUO Jianping. Research Progress on Animal Models for Hernia Diseases and New Hernia Repair Materials [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 55-66. |
[9] | YANG Jiahao, DING Chunlei, QIAN Fenghua, SUN Qi, JIANG Xusheng, CHEN Wen, SHEN Mengwen. Research Progress on Animal Models of Sepsis-Related Organ Injury [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 636-644. |
[10] | SUN Xiaorong, SU Dan, GUI Wenjuan, CHEN Yue. Establishment and Evaluation of a Moderate-to-Severe Knee Osteoarthritis Model in Rats Induced by Surgery [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 597-604. |
[11] | TIAN Fang, PAN Bin, SHI Jiayi, XU Yanyi, LI Weihua. Advances in Development of PM2.5-Exposed Animal Models and Their Application in Reproductive Toxicity Research [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 626-635. |
[12] | ZHAO Xiaona, WANG Peng, YE Maoqing, QU Xinkai. Establishment of a New Hyperglycemic Obesity Cardiac Dysfunction Mouse Model with Triacsin C [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 605-612. |
[13] | TU Yingxin, JI Yilan, WANG Fei, YANG Dongming, WANG Dongdong, SUN Zhixin, DAI Yuexin, WANG Yanji, Guanghan KAN, WU Bin, ZHAO Deming, YANG Lifeng. Evaluation of Simulated Weightlessness Model of Hindlimb Unloading Miniature Pigs and Their Tissue Damage [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 475-486. |
[14] | HUANG Dongyan, WU Jianhui. Establishment Methods and Application Evaluation of Animal Models in Reproductive Toxicology Research [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 550-559. |
[15] | ZHENG Yiqing, DENG Yasheng, FAN Yanping, LIANG Tianwei, HUANG Hui, LIU Yonghui, NI Zhaobing, LIN Jiang. Application Analysis of Animal Models for Pelvic Inflammatory Disease Based on Data Mining [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 405-418. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||