Laboratory Animal and Comparative Medicine ›› 2019, Vol. 39 ›› Issue (3): 169-177.DOI: 10.3969/j.issn.1674-5817.2019.03.001
Special Issue: 专家论坛; 实验动物资源开发与利用
XUE Ying1,2, FAN Jiang-lin3, LIU En-qi1,2
Received:
2019-05-27
Online:
2019-06-25
Published:
2021-01-29
CLC Number:
XUE Ying,FAN Jiang-lin,LIU En-qi. Genetically Modified Rabbit Models for Medical Sciences[J]. Laboratory Animal and Comparative Medicine, 2019, 39(3): 169-177. DOI: 10.3969/j.issn.1674-5817.2019.03.001.
[1] Fan J, Kitajima S, Watanabe T, et al.Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine[J]. Pharmacol Ther, 2015, 146:104-119. [2] Finking G, Hanke H. Nikolaj Nikolajewitsch Anitschkow (1885-1964) established the cholesterol-fed rabbit as a model for atherosclerosis research[J]. Atherosclerosis, 1997, 135(1): 1-7. [3] Marian AJ.On mice, rabbits, and human heart failure[J]. Circulation, 2005, 111(18):2276-2279. [4] Graur D, Duret L, Gouy M.Phylogenetic position of the order Lagomorpha (rabbits, hares and allies)[J]. Nature, 1996, 379(6563):333-335. [5] Hammer RE, Pursel VG, Rexroad Jr, et al.Production of transgenic rabbits, sheep and pigs by microinjection[J]. Nature, 1985, 315(6021):680-683. [6] Wang Y, Zhao S, Bai L, et al.Expression systems and species used for transgenic animal bioreactors[J]. Biomed Res Int, 2013, 2013:580463. [7] Gordon J, Scangos G, Plotkin D, et al.Genetic transformation of mouse embryos by microinjection of purified DNA[J]. Proc Natl Acad Sci USA, 1980, 77(12):7380-7384. [8] Thomas KR, Capecchi MR.Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells[J]. Cell, 1987, 51(3):503-512. [9] Koller BH, Hagemann LJ, Doetschman T, et al.Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells[J]. Proc Natl Acad Sci USA, 1989, 86(22):8927-8931 [10] Shinagawa T, Ishii S.Generation of Ski-knockdown mice by expressing a long double-strand RNA from an RNA polymerase II promoter[J]. Genes Dev, 2003, 17(11): 1340-1345. [11] Flisikowska T, Thorey IS, Offner S, et al.Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases[J]. PLoS One, 2011, 6(6):e21045. [12] Yang D, Zhang J, Xu J, et al.Production of apolipoprotein C-III knockout rabbits using zinc finger nucleases[J]. J Vis Exp, 2013,(81):e50957. doi: 10.3791/50957. [13] Song J, Zhong J, Guo X, et al.Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs[J]. Cell Res, 2013, 23(8):1059-1062. [14] Yang D, Xu J, Zhu T, et al.Effective gene targeting in rabbits using RNA-guided Cas9 nucleases[J]. J Mol Cell Biol, 2014, 6(1):97-99 [15] Zhao S, Wei K, Yu Q, et al.Applications of transgenic rabbits in biomedical research-based on the literature search[J]. World Rabbit Sci, 2010, 18(3):159-167. [16] Kitajima S, Liu E, Fan J. Rabbit Transgenesis.In:Houdebine LM, Fan J (eds). Rabbit Biotechnology[M]. Netherlands: Springer, 2009:37-47. [17] 刘恩岐, 郑华东, 赵四海, 等. 转基因家兔的制作[J]. 动物学杂志, 2006, 41(3):64-71. [18] Murakami H, Fujimura T, Nomura K, et al.Factors influencing efficient production of transgenic rabbits[J]. Theriogenology, 2002, 57(9):2237-2245. [19] Liu E, Kitajima S, Higaki Y, et al.High lipoprotein lipase activity increases insulin sensitivity in transgenic rabbits[J]. Metabolism, 2005, 54(1):132-138. [20] Liu E, Morimoto M, Kitajima S, et al.Increased expression of vascular endothelial growth factor in kidney leads to progressive impairment of glomerular functions[J]. J Am Soc Nephrol, 2007, 18(7):2094-2104. [21] Ding Y, Wang Y, Zhu H, et al.Hypertriglyceridemia and delayed clearance of fat load in transgenic rabbits expressing human apolipoprotein CIII[J]. Transgenic Res, 2011, 20(4):867-875. [22] Wang Y, Niimi M, Nishijima K, et al.Human apolipoprotein A-II protects against diet-induced atherosclerosis in transgenic rabbits[J]. Arterioscler Thromb Vasc Biol, 2013, 33(2):224-231. [23] Zhao S, Li Y, Gao S, et al.Autocrine human urotensin II enhances macrophage-derived foam cell formation in transgenic rabbits[J]. Biomed Res Int, 2015, 2015:843959. [24] Gao S, Wang X, Cheng D, et al.Overexpression of cholesteryl ester transfer protein increases macrophage-derived foam cell accumulation in atherosclerotic lesions of transgenic rabbits[J]. Mediators Inflamm, 2017, 2017:3824276. [25] Chrenek P, Vasicek D, Makarevich AV, et al.Increased transgene integration efficiency upon microinjection of DNA into both pronuclei of rabbit embryos[J].Transgenic Res, 2005, 14(4):417-428. [26] Ivics Z, Hiripi L, Hoffmann OI, et al.Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons[J]. Nat Protoc, 2014, 9(4):794-809. [27] Shen W, Li L, Pan Q, et al.Efficient and simple production of transgenic mice and rabbits using the new DMSO-sperm mediated exogenous DNA transfer method[J]. Mol Reprod Dev, 2006, 73(5):589-594. [28] Li L, Shen W, Min L, et al.Human lactoferrin transgenic rabbits produced efficiently using dimethylsulfoxide-sperm-mediated gene transfer[J]. Reprod Fertil Dev, 2006, 18(6):689-695. [29] Kuznetsov AV, Kuznetsova IV, Schit IY.DNA interaction with rabbit sperm cells and its transfer into ova in vitro and in vivo[J]. Mol Reprod Dev, 2000, 56(2 Suppl):292-297. [30] Moreno R, Rosal M, Cabero L, et al.Feasibility of retroviral vector-mediated in utero gene transfer to the fetal rabbit[J]. Fetal Diagn Ther, 2005, 20(6):485-493. [31] Chesne P, Adenot PG, Viglietta C, et al.Cloned rabbits produced by nuclear transfer from adult somatic cells[J]. Nat Biotechnol, 2002, 20(4):366-369. [32] Li S, Chen X, Fang Z, et al.Rabbits generated from fibroblasts through nuclear transfer[J]. Reproduction, 2006, 31(6):1085-1090. [33] Liu Y, Wang H, Lu J, et al.Rex rabbit somatic cell nuclear transfer with In vitro-matured oocytes[J]. Cell Reprogram, 2016,18(3):187-194. [34] Sugimoto H, Kida Y, Oh N, et al.Production of somatic cell nuclear transfer embryos using in vitro-grown and in vitro-matured oocytes in rabbits[J]. Zygote, 2015, 23(4):494-500. [35] Zhang S, Xiang S, Yang J, et al.Optimization of parthenogenetic activation of rabbit oocytes and development of rabbit embryo by somatic cell nuclear transfer[J]. Reprod Domest Anim, 2019, 54(2):258-269. [36] Skrzyszowska M, Smorag Z, Slomski R, et al.Generation of transgenic rabbits by the novel technique of chimeric somatic cell cloning[J]. Biol Reprod, 2006, 74(6):1114-1120. [37] Liu JL, Sung LY, Du F, et al.Differential development of rabbit embryos derived from parthenogenesis and nuclear transfer[J]. Mol Reprod Dev, 2004, 68(1):58-64. [38] Yin M, Jiang W, Fang Z, et al.Generation of hypoxanthine phosphoribosyltransferase gene knockout rabbits by homologous recombination and gene trapping through somatic cell nuclear transfer[J]. Sci Rep, 2015, 5:16023. [39] Zakhartchenko V, Flisikowska T, Li S, et al.Cell-mediated transgenesis in rabbits: chimeric and nuclear transfer animals[J]. Biol Reprod, 2011, 84(2):229-237. [40] Liu E, Fan J.Fundamentals of Laboratory Animal Science[M]. CRC:Taylor & Francis Group, 2017. [41] 刘恩岐. 人类疾病动物模型[M](第2版). 北京: 人民卫生出版社, 2013. [42] Komor AC, Kim YB, Packer MS,et al.Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533:420-424. [43] Liu Z, Chen M, Chen S, et al.Highly efficient RNA-guided base editing in rabbit[J]. Nat Commun, 2018, 9:2717. [44] 胡盛寿, 高润霖, 刘力生, 等. 《中国心血管病报告2018》概要[J]. 中国循环杂志, 2019, 34(3):209-220. [45] 刘恩岐, 范江霖. 动脉粥样硬化转化医学研究进展[J]. 西安交通大学学报: 医学版, 2014, 35(5):565-575. [46] 刘恩岐, 范江霖. 转基因兔在动脉粥样硬化研究中的应用及进展[J]. 中国动脉硬化杂志, 2003, 11(4):371-375. [47] Fan J, Chen Y, Yan H, et al.Principles and applications of rabbit models for atherosclerosis research[J]. J Atheroscler Thromb, 2018, 25(3):213-220. [48] Marian AJ, Wu Y, Lim DS, et al.A transgenic rabbit model for human hypertrophic cardiomyopathy[J]. J Clin Invest, 1999, 104(12):1683-1692. [49] James J, Sanbe A, Yager K, et al.Genetic manipulation of the rabbit heart via transgenesis[J]. Circulation, 2000, 101(14): 1715-1721. [50] Nagueh SF, Kopelen HA, Lim DS, et al.Tissue Doppler imaging consistently detects myocardial contraction and relaxation abnormalities, irrespective of cardiac hypertrophy, in a transgenic rabbit model of human hypertrophic cardiomyopathy[J]. Circulation, 2000, 102(12):1346-1350. [51] Nagueh SF, Chen S, Patel R, et al.Evolution of expression of cardiac phenotypes over a 4-year period in the beta-myosin heavy chain-Q403 transgenic rabbit model of human hypertrophic cardiomyopathy[J]. J Mol Cell Cardiol, 2004, 36(5):663-673. [52] Ripplinger CM, Li W, Hadley J, et al.Enhanced transmural fiber rotation and connexin 43 heterogeneity are associated with an increased upper limit of vulnerability in a transgenic rabbit model of human hypertrophic cardiomyopathy[J]. Circ Res, 2007, 101(10):1049-1057. [53] Patel R, Nagueh SF, Tsybouleva N, et al.Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy[J]. Circulation, 2001, 104(3): 317-324. [54] Senthil V, Chen SN, Tsybouleva N, et al.Prevention of cardiac hypertrophy by atorvastatin in a transgenic rabbit model of human hypertrophic cardiomyopathy[J]. Circ Res, 2005, 97(3):285-292. [55] James J, Zhang Y, Wright K, et al.Transgenic rabbits expressing mutant essential light chain do not develop hypertrophic cardiomyopathy[J]. J Mol Cell Cardiol, 2002, 34(7):873-882. [56] Sanbe A, James J, Tuzcu V, et al.Transgenic rabbit model for human troponin I-based hypertrophic cardiomyopathy[J]. Circulation, 2005, 111(18):2330-2338. [57] James J, Martin L, Krenz M, et al.Forced expression of alpha-myosin heavy chain in the rabbit ventricle results in cardioprotection under cardiomyopathic conditions[J]. Circulation, 2005,111(18):2339-2346. [58] Stanley BA, Graham DR, James J, et al.Altered myofilament stoichiometry in response to heart failure in a cardioprotective α-myosin heavy chain transgenic rabbit model[J]. Proteomics Clin Appl, 2011, 5(3-4):147-158. [59] Nishizawa T, Vatner SF, Hong C, et al.Overexpressed cardiac Gsalpha in rabbits[J]. J Mol Cell Cardiol, 2006, 41(1):44-50. [60] Nishizawa T, Shen YT, Rossi F, et al.Altered autonomic control in conscious transgenic rabbits with overexpressed cardiac Gsalpha[J]. Am J Physiol Heart Circ Physiol, 2007, 292(2):H971-H975. [61] Brunner M, Peng X, Liu GX, et al.Mechanisms of cardiac arrhythmias and sudden death in transgenic rabbits with long QT syndrome[J]. J Clin Invest, 2008, 118(6):2246-2259. [62] Odening KE, Hyder O, Chaves L, et al.Pharmacogenomics of anesthetic drugs in transgenic LQT1 and LQT2 rabbits reveal genotype-specific differential effects on cardiac repolarization[J]. Am J Physiol Heart Circ Physiol, 2008, 295(6):H2264-H2272. [63] Major P, Baczkó I, Hiripi L, et al.A novel transgenic rabbit model with reduced repolarization reserve: long QT syndrome caused by a dominant-negative mutation of the KCNE1 gene[J]. Br J Pharmacol, 2016, 173(12):2046-2061. [64] Dunn CS, Mehtali M, Houdebine LM, et al.Human immunodeficiency virus type 1 infection of human CD4-transgenic rabbits[J]. J Gen Virol, 1995, 76(Pt6):1327-1336. [65] Snyder BW, Vitale J, Milos P, et al.Developmental and tissue-specific expression of human CD4 in transgenic rabbits[J]. Mol Reprod Dev, 1995, 40(4):419-428. [66] Leno M, Hague BF, Teller R, et al.HIV-1 mediates rapid apoptosis of lymphocytes from human CD4 transgenic but not normal rabbits[J]. Virology, 1995, 213(2):450-454. [67] Hoeg JM, Santamarina-Fojo S, Berard AM, et al.Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis[J]. Proc Natl Acad Sci USA, 1996, 93(21):11448-11453. [68] Mehlum A, Muri M, Hagve TA, et al.Mice overexpressing human lecithin:cholesterol acyltransferase are not protected against diet-induced atherosclerosis[J]. APMIS, 1997, 105(11):861-868. [69] Levak-Frank S, Radner H, Walsh A, et al.Muscle-specific overexpression of lipoprotein lipase causes a severe myopathy characterized by proliferation of mitochondria and peroxisomes in transgenic mice[J]. J Clin Invest, 1995, 96(2): 976-986. [70] Koike T, Wang X, Unoki H, et al.Increased expression of lipoprotein lipase in transgenic rabbits does not lead to abnormalities in skeletal and heart muscles[J]. Muscle Nerve, 2002, 26(6): 823-827. [71] James J, Zhang Y, Osinska H, et al.Transgenic modeling of a cardiac troponin I mutation linked to familial hypertrophic cardiomyopathy[J]. Circ Res, 2000, 87(9):805-811. [72] Seok J, Warren HS, Cuenca AG, et al.Genomic responses in mouse models poorly mimic human inflammatory diseases[J]. Proc Natl Acad Sci U S A, 2013, 110(9):3507-3512. [73] Zhang C, Zheng H, Yu Q, et al.A practical method for quantifying atherosclerotic lesions in rabbits[J]. J Comp Pathol, 2010, 142(2-3):122-128. |
[1] | LIU Yayi, JIA Yunfeng, ZUO Yiming, ZHANG Junping, LÜ Shichao. Progress and Evaluation of Animal Model of Heart Qi-Yin Deficiency Syndrome [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 411-421. |
[2] | ZHAO Xin, WANG Chenxi, SHI Wenqing, LOU Yuefen. Advances in the Application of Zebrafish in the Research of Inflammatory Bowel Disease Mechanisms and Drug Development [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 422-431. |
[3] | PAN Yicong, JIANG Wenhong, HU Ming, QIN Xiao. Optimization of Surgical Procedure and Efficacy Evaluation of Aortic Calcification Model in Rats with Chronic Kidney Disease [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 279-289. |
[4] | WANG Biying, LU Jiashuo, ZAN Guiying, CHEN Ruosong, CHAI Jingrui, LIU Jinggen, WANG Yujun. Establishment Methods and Application Progress of Rodent Models for Drug Addiction [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 158-166. |
[5] | CHEN Yuhan, CHEN Jinling, LI Xin, OU Yanhua, WANG Si, CHEN Jingyi, WANG Xingyi, YUAN Jiali, DUAN Yuanyuan, YANG Zhongshan, NIU Haitao. Analysis of Animal Models of Myasthenia Gravis Based on Its Clinical Characteristics in Chinese and Western Medicine [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 176-186. |
[6] | LIAN Hui, JIANG Yanling, LIU Jia, ZHANG Yuli, XIE Wei, XUE Xiaoou, LI Jian. Construction and Evaluation of a Rat Model of Abnormal Uterine Bleeding [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 130-146. |
[7] | LUO Shixiong, ZHANG Sai, CHEN Hui. Research Progress in Establishment and Evaluation of Common Asthma Animal Models [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 167-175. |
[8] | FEI Bin, GUO Wenke, GUO Jianping. Research Progress on Animal Models for Hernia Diseases and New Hernia Repair Materials [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 55-66. |
[9] | YANG Jiahao, DING Chunlei, QIAN Fenghua, SUN Qi, JIANG Xusheng, CHEN Wen, SHEN Mengwen. Research Progress on Animal Models of Sepsis-Related Organ Injury [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 636-644. |
[10] | SUN Xiaorong, SU Dan, GUI Wenjuan, CHEN Yue. Establishment and Evaluation of a Moderate-to-Severe Knee Osteoarthritis Model in Rats Induced by Surgery [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 597-604. |
[11] | TIAN Fang, PAN Bin, SHI Jiayi, XU Yanyi, LI Weihua. Advances in Development of PM2.5-Exposed Animal Models and Their Application in Reproductive Toxicity Research [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 626-635. |
[12] | ZHAO Xiaona, WANG Peng, YE Maoqing, QU Xinkai. Establishment of a New Hyperglycemic Obesity Cardiac Dysfunction Mouse Model with Triacsin C [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 605-612. |
[13] | LIN Qingqing, DAI Jinlong, CHEN Zhisen, GUO Jianmin, YANG Wei. Pathological Diagnosis of Systemic Amyloidosis in a New Zealand White Rabbit [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 695-699. |
[14] | TU Yingxin, JI Yilan, WANG Fei, YANG Dongming, WANG Dongdong, SUN Zhixin, DAI Yuexin, WANG Yanji, Guanghan KAN, WU Bin, ZHAO Deming, YANG Lifeng. Evaluation of Simulated Weightlessness Model of Hindlimb Unloading Miniature Pigs and Their Tissue Damage [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 475-486. |
[15] | HUANG Dongyan, WU Jianhui. Establishment Methods and Application Evaluation of Animal Models in Reproductive Toxicology Research [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 550-559. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||