Laboratory Animal and Comparative Medicine ›› 2025, Vol. 45 ›› Issue (3): 318-330.
• Animal Experimental Techniques and Methods • Previous Articles Next Articles
HU Min1(), DONG Lexuan2(
)(
), GAO Yi2(
)(
), XI Ziqi2, SHEN Zihao2, TANG Ruiyang2, LUAN Xin2, TANG Min2(
)(
), ZHANG Weidong1,2,3
Received:
2024-12-30
Revised:
2025-02-10
Online:
2025-06-25
Published:
2025-07-07
Contact:
TANG Min
CLC Number:
HU Min,DONG Lexuan,GAO Yi,et al. Prospects for 3D Bioprinting Research and Transdisciplinary Application to Preclinical Animal Models[J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 318-330.
Figure 1 Schematic diagram of the working principles of three types of 3D bioprinting processesNote:A, Inkjet-based 3D bioprinting, in which localized heating of the bioink inflates an air bubble to push droplets out from the nozzle; B, Extrusion-based 3D bioprinting, which prints continuous filaments of bioink layer by layer; C, Light-based 3D bioprinting, which utilizes a digital micro-mirror device (DMD) chip to project patterned UV light or other light sources onto the bioink.
模型类型 Model types | 2D细胞模型 2D cell model | 生物3D打印模型 3D bioprinting model | PDX动物模型 Patient-derived xenograft animal model |
---|---|---|---|
实验周期 Experimental cycle | 1周内 | 7 d | 3~6个月 |
成本 Cost | 1 000~2 000元/例 | 数万元/批 | 数十万元/批 |
建模成功率 Modeling success rate | 高 (>90%) [ | 高 (>80%) [ | 低 (>60%) [ |
临床相关性 Clinical relevance | 有限 | 高 | 高 |
遗传信息保真度Genetic information fidelity | 有限 | 高 | 高 |
可重复性 Reproducibility | 高 | 高 | 低 |
细胞种类 Cell types | 有限 | 多样化,含有多种细胞 | 多样化,但受鼠源细胞影响 |
系统完整性 System integrity | 低,仅细胞层面 | 中等,组织/器官层面,尚缺乏动态 循环和整体性调控 | 高,具有完整生理环境 |
材料可控性 Material controllability | 无 | 高 | 低 |
通量 Throughput | 高 | 高 | 低 |
Table 1 Comparison of common models in precision medicine
模型类型 Model types | 2D细胞模型 2D cell model | 生物3D打印模型 3D bioprinting model | PDX动物模型 Patient-derived xenograft animal model |
---|---|---|---|
实验周期 Experimental cycle | 1周内 | 7 d | 3~6个月 |
成本 Cost | 1 000~2 000元/例 | 数万元/批 | 数十万元/批 |
建模成功率 Modeling success rate | 高 (>90%) [ | 高 (>80%) [ | 低 (>60%) [ |
临床相关性 Clinical relevance | 有限 | 高 | 高 |
遗传信息保真度Genetic information fidelity | 有限 | 高 | 高 |
可重复性 Reproducibility | 高 | 高 | 低 |
细胞种类 Cell types | 有限 | 多样化,含有多种细胞 | 多样化,但受鼠源细胞影响 |
系统完整性 System integrity | 低,仅细胞层面 | 中等,组织/器官层面,尚缺乏动态 循环和整体性调控 | 高,具有完整生理环境 |
材料可控性 Material controllability | 无 | 高 | 低 |
通量 Throughput | 高 | 高 | 低 |
[1] | AKHTAR A. The flaws and human harms of animal experimentation[J]. Camb Q Healthc Ethics, 2015, 24(4):407-419. DOI:10.1017/S0963180115000079 . |
[2] | BALCOMBE J P. Laboratory environments and rodents' behavioural needs: a review[J]. Lab Anim, 2006, 40(3):217-235. DOI:10.1258/002367706777611488 . |
[3] | TEBON P J, WANG B W, MARKOWITZ A L, et al. Drug screening at single-organoid resolution via bioprinting and interferometry[J]. Nat Commun, 2023, 14(1):3168. DOI:10.1038/s41467-023-38832-8 . |
[4] | LEVATO R, DUDARYEVA O, GARCIAMENDEZ-MIJARES C E, et al. Light-based vat-polymerization bioprinting[J]. Nat Rev Meth Primers, 2023, 3:47. DOI:10.1038/s43586-023-00231-0 . |
[5] | KANG H W, LEE S J, KO I K, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity[J]. Nat Biotechnol, 2016, 34(3):312-319. DOI:10.1038/nbt.3413 . |
[6] | JI S, GUVENDIREN M. Recent advances in bioink design for 3D bioprinting of tissues and organs[J]. Front Bioeng Biotechnol, 2017, 5:23. DOI:10.3389/fbioe.2017.00023 . |
[7] | WANG T, HAN Y, WU Z J, et al. Tissue-specific hydrogels for three-dimensional printing and potential application in peripheral nerve regeneration[J]. Tissue Eng Part A, 2022, 28(3-4):161-174. DOI:10.1089/ten.TEA.2021.0093 . |
[8] | XIANG Y, MILLER K, GUAN J A, et al. 3D bioprinting of complex tissues in vitro: state-of-the-art and future perspectives[J]. Arch Toxicol, 2022, 96(3):691-710. DOI:10.1007/s00204-021-03212-y . |
[9] | TANG M, RICH J N, CHEN S C. Biomaterials and 3D bioprinting strategies to model glioblastoma and the blood-brain barrier[J]. Adv Mater, 2021, 33(5): e2004776. DOI:10.1002/adma.202004776 . |
[10] | ZHOU L Y, FU J Z, HE Y. A review of 3D printing technologies for soft polymer materials[J]. Adv Funct Mater, 2020, 30(28):2000187. DOI:10.1002/adfm.202000187 . |
[11] | U.S. Food and Drug Administration. Novel drug approvals for 2024[EB/OL]. (2024-05-22)[2025-06-05].. |
[12] | VAN NORMAN G A. Limitations of animal studies for predicting toxicity in clinical trials: is it time to rethink our current approach?[J]. JACC Basic Transl Sci, 2019, 4(7):845-854. DOI:10.1016/j.jacbts.2019.10.008 . |
[13] | SCHUSTER B, JUNKIN M, KASHAF S S, et al. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids[J]. Nat Commun, 2020, 11(1):5271. DOI:10.1038/s41467-020-19058-4 . |
[14] | TUNG Y T, CHEN Y C, DERR K, et al. A 3D bioprinted human neurovascular unit model of glioblastoma tumor growth[J]. Adv Healthc Mater, 2024, 13(15):e2302831. DOI:10.1002/adhm.202302831 . |
[15] | DESIGAUX T, COMPERAT L, DUSSERRE N, et al. 3D bioprinted breast cancer model reveals stroma-mediated modulation of extracellular matrix and radiosensitivity[J]. Bioact Mater, 2024, 42:316-327. DOI:10.1016/j.bioactmat.2024. 08.037 . |
[16] | TANG M, XIE Q, GIMPLE R C, et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions[J]. Cell Res, 2020, 30(10):833-853. DOI:10.1038/s41422-020-0338-1 . |
[17] | TANG M, TIWARI S K, AGRAWAL K, et al. Rapid 3D bioprinting of glioblastoma model mimicking native biophysical heterogeneity[J]. Small, 2021, 17(15): e2006050. DOI:10.1002/smll.202006050 . |
[18] | TANG M, QU Y J, HE P X, et al. Heat-inducible CAR-T overcomes adverse mechanical tumor microenvironment in a 3D bioprinted glioblastoma model[J]. Mater Today Bio, 2024, 26:101077. DOI:10.1016/j.mtbio.2024.101077 . |
[19] | JOHNSON B N, LANCASTER K Z, HOGUE I B, et al. 3D printed nervous system on a chip[J]. Lab Chip, 2016, 16(8):1393-1400. DOI:10.1039/c5lc01270h . |
[20] | BANERJEE D, IVANOVA M M, CELIK N, et al. Biofabrication of an in-vitro bone model for Gaucher disease[J]. Biofabrication, 2023, 15(4):045023. DOI:10.1088/1758-5090/acf95a . |
[21] | SCARIAN E, BORDONI M, FANTINI V, et al. Patients' stem cells differentiation in a 3D environment as a promising experimental tool for the study of amyotrophic lateral sclerosis[J]. Int J Mol Sci, 2022, 23(10):5344. DOI:10.3390/ijms23105344 . |
[22] | ROUSSEL R, STEG P G, MOHAMMEDI K, et al. Prevention of cardiovascular disease through reduction of glycaemic exposure in type 2 diabetes: a perspective on glucose-lowering interventions[J]. Diabetes Obes Metab, 2018, 20(2):238-244. DOI:10.1111/dom.13033 . |
[23] | ALI A S M, WU D W, BANNACH-BROWN A, et al. 3D bioprinting of liver models: a systematic scoping review of methods, bioinks, and reporting quality[J]. Mater Today Bio, 2024, 26:100991. DOI:10.1016/j.mtbio.2024.100991 . |
[24] | NGUYEN D G, FUNK J, ROBBINS J B, et al. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity in vitro [J]. PLoS One, 2016, 11(7): e0158674. DOI:10.1371/journal.pone.0158674 . |
[25] | JANANI G, PRIYA S, DEY S, et al. Mimicking native liver lobule microarchitecture in vitro with parenchymal and non-parenchymal cells using 3D bioprinting for drug toxicity and drug screening applications[J]. ACS Appl Mater Interfaces, 2022, 14(8):10167-10186. DOI:10.1021/acsami.2c00312 . |
[26] | HE J Y, WANG J L, PANG Y, et al. Bioprinting of a hepatic tissue model using human-induced pluripotent stem cell-derived hepatocytes for drug-induced hepatotoxicity evaluation[J]. Int J Bioprint, 2022, 8(3):581. DOI:10.18063/ijb.v8i3.581 . |
[27] | DEY S, BHAT A, JANANI G, et al. Microfluidic human physiomimetic liver model as a screening platform for drug induced liver injury[J]. Biomaterials, 2024, 310:122627. DOI:10.1016/j.biomaterials.2024.122627 . |
[28] | FERRI N, SIEGL P, CORSINI A, et al. Drug attrition during pre-clinical and clinical development: understanding and managing drug-induced cardiotoxicity[J]. Pharmacol Ther, 2013, 138(3):470-484. DOI:10.1016/j.pharmthera.2013.03.005 . |
[29] | YANG K X, WANG L X, VIJAYAVENKATARAMAN S, et al. Recent applications of three-dimensional bioprinting in drug discovery and development[J]. Adv Drug Deliv Rev, 2024, 214:115456. DOI:10.1016/j.addr.2024.115456 . |
[30] | ARAI K, MURATA D, TAKAO S, et al. Drug response analysis for scaffold-free cardiac constructs fabricated using bio-3D printer[J]. Sci Rep, 2020, 10(1):8972. DOI:10.1038/s41598-020-65681-y . |
[31] | IWANAGA S, HAMADA Y, TSUKAMOTO Y, et al. Design and fabrication of mature engineered pre-cardiac tissue utilizing 3D bioprinting technology and enzymatically crosslinking hydrogel[J]. Materials, 2022, 15(22):7928. DOI:10.3390/ma15227928 . |
[32] | LIU S T, WANG Z H, CHEN X Y, et al. Multiscale anisotropic scaffold integrating 3D printing and electrospinning techniques as a heart-on-a-chip platform for evaluating drug-induced cardiotoxicity[J]. Adv Healthc Mater, 2023, 12(24): e2300719. DOI:10.1002/adhm.202300719 . |
[33] | 王梓霏, 丁雅卉, 李彦, 等. 生物3D打印在肿瘤研究及组织工程中的应用[J]. 中国癌症杂志, 2024, 34(9):814-826. DOI: 10.19401/j.cnki.1007-3639.2024.09.002 . |
WANG Z F, DING Y H, LI Y, et al. Application of 3D bioprinting in cancer research and tissue engineering[J]. China Oncol, 2024, 34(9):814-826. DOI: 10.19401/j.cnki.1007-3639.2024.09.002 . | |
[34] | BAI Y X, WANG Z J, HE X L, et al. Application of bioactive materials for osteogenic function in bone tissue engineering[J]. Small Methods, 2024, 8(8): e2301283. DOI:10.1002/smtd.202301283 . |
[35] | YAN Y F, CHEN H, ZHANG H B, et al. Vascularized 3D printed scaffolds for promoting bone regeneration[J]. Biomaterials, 2019, 190-191:97-110. DOI:10.1016/j.biomaterials.2018.10.033 . |
[36] | VEGA S L, KWON M Y, BURDICK J A. Recent advances in hydrogels for cartilage tissue engineering[J]. Eur Cell Mater, 2017, 33:59-75. DOI:10.22203/eCM.v033a05 . |
[37] | WENG T T, ZHANG W, XIA Y L, et al. 3D bioprinting for skin tissue engineering: Current status and perspectives[J]. J Tissue Eng, 2021, 12:20417314211028574. DOI:10.1177/204173 14211028574 . |
[38] | SHI Y, XING T L, ZHANG H B, et al. Tyrosinase-doped bioink for 3D bioprinting of living skin constructs[J]. Biomed Mater, 2018, 13(3):035008. DOI:10.1088/1748-605X/aaa5b6 . |
[39] | JIN R H, CUI Y C, CHEN H J, et al. Three-dimensional bioprinting of a full-thickness functional skin model using acellular dermal matrix and gelatin methacrylamide bioink[J]. Acta Biomater, 2021, 131:248-261. DOI:10.1016/j.actbio.2021. 07.012 . |
[40] | GOLD K A, SAHA B, RAJEEVA PANDIAN N K, et al. 3D bioprinted multicellular vascular models[J]. Adv Healthc Mater, 2021, 10(21): e2101141. DOI:10.1002/adhm.202101141 . |
[41] | WU X F, CHEN K, CHAI Q, et al. Freestanding vascular scaffolds engineered by direct 3D printing with Gt-Alg-MMT bioinks[J]. Biomater Adv, 2022, 133:112658. DOI:10.1016/j.msec. 2022.112658 . |
[42] | LÓPEZ-CARRASCO A, MARTÍN-VAÑÓ S, BURGOS-PANADERO R, et al. Impact of extracellular matrix stiffness on genomic heterogeneity in MYCN-amplified neuro-blastoma cell line[J]. J Exp Clin Cancer Res, 2020, 39(1):226. DOI:10.1186/s13046-020-01729-1 . |
[43] | REN X X, HUANG M L, WENG W X, et al. Personalized drug screening in patient-derived organoids of biliary tract cancer and its clinical application[J]. Cell Rep Med, 2023, 4(11):101277. DOI:10.1016/j.xcrm.2023.101277 . |
[44] | LUCÀ R, ASSENZA M R, MAIULLARI F, et al. Inhibition of the mTOR pathway and reprogramming of protein synthesis by MDM4 reduce ovarian cancer metastatic properties[J]. Cell Death Dis, 2021, 12(6):558. DOI:10.1038/s41419-021-03828-z . |
[45] | ZHAO Z Y, FENG X Q, WU H J, et al. Construction of a lung cancer 3D culture model based on alginate/gelatin micro-beads for drug evaluation[J]. Transl Lung Cancer Res, 2024, 13(10):2698-2712. DOI:10.21037/tlcr-24-490 . |
[46] | SHIHABI A AL, TEBON P J, NGUYEN H T L, et al. The landscape of drug sensitivity and resistance in sarcoma[J]. Cell Stem Cell, 2024, 31(10):1524-1542.e4. DOI:10.1016/j.stem. 2024.08.010 . |
[47] | SUN H, SUN L J, KE X D, et al. Prediction of clinical precision chemotherapy by patient-derived 3D bioprinting models of colorectal cancer and its liver metastases[J]. Adv Sci, 2024, 11(2): e2304460. DOI:10.1002/advs.202304460 . |
[48] | PERRON U, GRASSI E, CHATZIPLI A, et al. Integrative ensemble modelling of cetuximab sensitivity in colorectal cancer patient-derived xenografts[J]. Nat Commun, 2024, 15(1):9139. DOI:10.1038/s41467-024-53163-y . |
[49] | LI S, LV J, LI Z, et al. Overcoming multi-drug resistance in SCLC: A synergistic approach with venetoclax and hydroxychloroquine targeting the lncRNA LYPLAL1-DT/BCL2/BECN1 pathway[J]. Mol Cance, 2024, 23(1): 243. DOI: 10.1186/s12943-024-02145-1 . |
[50] | HASHIMOTO T, NAKAMURA Y, FUJISAWA T, et al. The SCRUM-MONSTAR cancer-omics ecosystem: striving for a quantum leap in precision medicine[J]. Cancer Discov, 2024, 14(11):2243-2261. DOI:10.1158/2159-8290.CD-24-0206 . |
[51] | 邹晟.基于3D生物打印技术构建肺癌体外模型[D].南昌: 南昌大学, 2023. DOI: 10.27232/d.cnki.gnchu.2023.000153 . |
ZOU S. A lung cancer model in vitro was constructed based on 3D bioprinting[D]. Nanchang: Nanchang University, 2023. DOI:10.27232/d.cnki.gnchu.2023.000153 . | |
[52] | 孙航. 基于3D生物打印技术构建人源消化系恶性肿瘤临床前模型及其临床应用研究[D]. 北京: 北京协和医学院, 2024.DOI:10.27648/d.cnki.gzxhu.2024.000117 . |
SUN H. Construction and clinical application research on human-derived preclinical models of gastrointestinal cancer based on 3D bioprinting technology[D]. Beijing: Peking Union Medical College, 2024. DOI:10.27648/d.cnki.gzxhu.2024. 000117 . | |
[53] | 肖瑞英, 鲍伟, 祝亚平. PDX模型在妇科肿瘤中的研究进展[J].中国计划生育和妇产科,2023,15(7):10-13. DOI:10.3969/j.issn.1674-4020.2023.07.03 . |
XIAO R Y, BAO W, ZHU Y P. Research progress of PDX model in gynecological tumors[J]. Chin J Fam Plan Gynecol, 2023, 15(7):10-13. DOI:10.3969/j.issn.1674-4020.2023.07.03 . | |
[54] | HERPERS B, EPPINK B, JAMES M I, et al. Functional patient-derived organoid screenings identify MCLA-158 as a therapeutic EGFR × LGR5 bispecific antibody with efficacy in epithelial tumors[J]. Nat Cancer, 2022, 3(4):418-436. DOI:10.1038/s43018-022-00359-0 . |
[55] | CHOI J, JUNG T Y, KIM J H, et al. Efficacy of recombinant Bacillus Calmette-Guérin containing dltA in in vivo three-dimensional bio-printed bladder cancer-on-a-chip and ex vivo orthotopic mouse model[J]. Investig Clin Urol, 2023, 64(3):296-305. DOI:10.4111/icu.20220293 . |
[56] | HONG G, KIM J, OH H, et al. Production of multiple cell-laden microtissue spheroids with a biomimetic hepatic-lobule-like structure[J]. Adv Mater, 2021, 33(36): 2102624. DOI:10.1002/adma.202102624 . |
[57] | LOPEZ M A, HUTTER L, PAGIN E, et al. In vivo efficacy proof of concept of a large-size bioprinted dermo-epidermal substitute for permanent wound coverage[J]. Front Bioeng Biotechnol, 2023, 11:1217655. DOI:10.3389/fbioe.2023.1217655 . |
[58] | LIU Y, ZHANG Y F, MEI T X, et al. hESCs-derived early vascular cell spheroids for cardiac tissue vascular engineering and myocardial infarction treatment[J]. Adv Sci, 2022, 9(9): e2104299. DOI:10.1002/advs.202104299 . |
[59] | JIANG Z R, JIN B, LIANG Z, et al. Liver bioprinting within a novel support medium with functionalized spheroids, hepatic vein structures, and enhanced post-transplantation vascularization[J]. Biomaterials, 2024, 311:122681. DOI:10.1016/j.biomaterials.2024.122681 . |
[60] | SUN Y Y, HUO Y Y, RAN X Y, et al. Instant Trachea reconstruction using 3D-bioprinted C-shape biomimetic Trachea based on tissue-specific matrix hydrogels[J]. Bioact Mater, 2023, 32:52-65. DOI:10.1016/j.bioactmat.2023.09.011 . |
[61] | SUN Z W, YUE X L, LIU L, et al. Bioprinted Notch ligand to function as stem cell niche improves muscle regeneration in dystrophic muscle[J]. Int J Bioprint, 2023, 9(3):711. DOI:10.18063/ijb.711 . |
[62] | SUN B B, LIAN M F, HAN Y, et al. A 3D-Bioprinted dual growth factor-releasing intervertebral disc scaffold induces nucleus pulposus and annulus fibrosus reconstruction[J]. Bioact Mater, 2020, 6(1):179-190. DOI:10.1016/j.bioactmat.2020.06.022 . |
[63] | XU Z Y, HUANG J J, LIU Y, et al. Extracellular matrix bioink boosts stemness and facilitates transplantation of intestinal organoids as a biosafe Matrigel alternative[J]. Bioeng Transl Med, 2022, 8(1): e10327. DOI:10.1002/btm2.10327 . |
[64] | NANMO A, YAN L, ASABA T, et al. Bioprinting of hair follicle germs for hair regenerative medicine[J]. Acta Biomater, 2023, 165:50-59. DOI:10.1016/j.actbio.2022.06.021 . |
[65] | NG W L, GOH G L, GOH G D, et al. Progress and opportunities for machine learning in materials and processes of additive manufacturing[J]. Adv Mater, 2024, 36(34): e2310006. DOI:10.1002/adma.202310006 . |
[1] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||